Skip to main content
Log in

Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The hydrated iron fluoride (Fe3F8·2H2O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe3F8·2H2O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF2.2(OH)0.8·0.33H2O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF2.2(OH)0.8·0.33H2O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g−1 in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g−1, but the cycle performance is not very satisfactory, only 170 mAh g−1 after 50 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Nayak, P.K., Yang, L., Brehm, W., Adelhelm, P.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. Engl. (2017). https://doi.org/10.1002/anie.201703772

    Article  PubMed  Google Scholar 

  2. Ould Ely, T., Kamzabek, D., Chakraborty, D.: Batteries safety: recent progress and current challenges. Front. Energy Res. (2019). https://doi.org/10.3389/fenrg.2019.00071

    Article  Google Scholar 

  3. Nwachukwu, I.M., Nwanya, A.C., Ekwealor, A.B.C., Ezema, F.I.: Recent progress in Mn and Fe-rich cathode materials used in Li-ion batteries. Energy Storage. 54, 105248 (2022). https://doi.org/10.1016/j.est.2022.105248

    Article  Google Scholar 

  4. Lian, J.L., Wu, Y., Guo, Y.C.A., Zhao, Z.Y., Zhang, Q.H., Hou, Y., Chen, L.X., Lu, B., Pan, X.H., Ye, Z.Z., et al.: Design of hierarchical and mesoporous FeF3/rGO hybrids as cathodes for superior lithium-ion batteries. Chin. Chem. Lett. 33(8), 3931–3935 (2022). https://doi.org/10.1016/j.cclet.2021.12.014

    Article  CAS  Google Scholar 

  5. Liu, L., Guo, H.P., Zhou, M., Wei, Q.L., Yang, Z.H., Shu, H.B., Yang, X.K., Tan, J.L., Yan, Z.C., Wang, X.Y.: A comparison among FeF3 center dot 3H(2)O, FeF3 center dot 0.33H(2)O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2013.04.077

    Article  Google Scholar 

  6. Lu, L., Li, S., Li, J., Lan, L.F., Lu, Y., Xu, S.J., Huang, S., Pan, C.Y., Zhao, F.H.: High-performance cathode material of FeF3 center dot 0.33H(2)o modified with carbon nanotubes and graphene for lithium–ion batteries. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-2925-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yaroslavtsev, A.B., Stenina, I.A.: Carbon coating of electrode materials for lithium-ion batteries. Surf. Innov. 9(2–3), 92–110 (2021). https://doi.org/10.1680/jsuin.20.00044

    Article  Google Scholar 

  8. Zeng, C.Z., Chen, F.L., Ye, Q., Guo, Q., Li, C.B., Huang, C.: Facile preparation of hierarchical micro-nano FeF(3)0.33H(2)O by a one-pot method with dual surfactants. Nanotechnology 32(15), abd6d0 (2021). https://doi.org/10.1088/1361-6528/abd6d0

    Article  CAS  Google Scholar 

  9. Liu, M., Liu, J.C., Chen, B.B., Wu, T.J., Wang, G., Chen, M.F., Yang, Z.H., Bai, Y.S., Wang, X.Y.: Unveiling the Role and mechanism of Nb doping and In Situ carbon coating on improving lithium-ion storage characteristics of rod-like morphology FeF3 center dot 033H(2)O. Small 18(1), 105193 (2022). https://doi.org/10.1002/smll.202105193

    Article  CAS  Google Scholar 

  10. Li, Y., Zhou, X.Z., Bai, Y., Chen, G.H., Wang, Z.H., Li, H., Wu, F., Wu, C.: Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries. ACS Appl. Mater. Interfaces 9(23), 19852–19860 (2017). https://doi.org/10.1021/acsami.7b03980

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, C., Yan, M.X., Li, W.T., Han, C., Li, J., Zhao, H., Jia, G.X., An, S.L., Qiu, X.P.: Cr-doped Fe1-xCrxF3 center dot 0.33H(2)O nanomaterials as cathode materials for sodium–ion batteries. ACS Appl. Mater. Interfaces 13(41), 48653–48660 (2021). https://doi.org/10.1021/acsami.1c13462

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z.H., Zhang, Z.J., Yuan, Y.L., Huang, Y.Q., Wang, X.Y., Chen, X.Y., Wei, S.Y.: First-principles study of Ti doping in FeF3 center dot 0.33H(2)O. Curr. Appl. Phys. 16(8), 905–913 (2016). https://doi.org/10.1016/j.cap.2016.05.010

    Article  Google Scholar 

  13. Wei, S.Y., Wang, X.Y., Yu, R.Z., Zhang, R., Liu, M., Yang, Z.H., Hu, H.: Ti-doped Fe1-xTixF3.0.33H(2)O/C nanocomposite as an ultrahigh rate capability cathode materials of lithium ion batteries. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.01.240

    Article  Google Scholar 

  14. Duttine, M., Dambournet, D., Penin, N., Carlier, D., Bourgeois, L., Wattiaux, A., Chapman, K.W., Chupas, P.J., Groult, H., Durand, E., et al.: Tailoring the composition of a mixed anion iron-based fluoride compound: evidence for anionic vacancy and electrochemical performance in lithium cells. Chem. Mater. 26(14), 4190–4199 (2014). https://doi.org/10.1021/cm501396n

    Article  CAS  Google Scholar 

  15. Lemoine, K., Zhang, L., Dambournet, D., Greneche, J.-M., Hemon-Ribaud, A., Leblanc, M., Borkiewicz, O.J., Tarascon, J.M., Maisonneuve, V., Lhoste, J.: Synthesis by thermal decomposition of two iron hydroxyfluorides: structural effects of Li insertion. Chem. Mater. 31(11), 4246–4257 (2019). https://doi.org/10.1021/acs.chemmater.9b01252

    Article  CAS  Google Scholar 

  16. Yang, Z.H., Zhang, Z.J., Yuan, Y.L., Huang, Y.Q., Wang, X.Y., Chen, X.Y., Wei, S.Y.: A first-principle study of the effect of OH-doping on the elastic constants and electronic structure of HTB-FeF3. RSC Adv. 6(79), 75766–75776 (2016). https://doi.org/10.1039/c6ra12567k

    Article  CAS  Google Scholar 

  17. Burbano, M., Duttine, M., Morgan, B.J., Borkiewicz, O.J., Chapman, K.W., Wattiaux, A., Demourgues, A., Groult, H., Salanne, M., Dambournet, D.: Impact of anionvacancies on the local and electronic structures of iron-based oxyfluoride electrodes. Phys. Chem. Lett. 10(1), 107–112 (2019). https://doi.org/10.1021/acs.jpclett.8b03503

    Article  CAS  Google Scholar 

  18. Mao, Y.J., Liu, F., Chen, Y.H., Jiang, X., Zhao, X.S., Sheng, T., Ye, J.Y., Liao, H.G., Wei, L., Sun, S.G.: Enhancing electrocatalytic nitrogen reduction to ammonia with rare earths (La, Y, and Sc) on high-index faceted platinum alloy concave nanocubes. Mater. Chem. A 9(46), 26277–26285 (2021). https://doi.org/10.1039/d1ta05515a

    Article  CAS  Google Scholar 

  19. Toby, B.H., Von Dreele, R.B.: GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Appl. Crystallogr. (2013). https://doi.org/10.1107/S0021889813003531

    Article  Google Scholar 

  20. Herdtweck, E.: Crystal-structure of the mixed-valence iron, fluorid hydrate, FE3F82H2O. Zeitschrift Fur Anorganische Und Allgemeine Chem. 501(6), 131–136 (1983). https://doi.org/10.1002/zaac.19835010615

    Article  CAS  Google Scholar 

  21. Azoulay, J.: Photoelectron-spectroscopy—principles and applications. Vacuum 33(4), 211–213 (1983). https://doi.org/10.1016/0042-207X(83)90056-8

    Article  CAS  Google Scholar 

  22. Qiu, S.R., Lai, H.F., Yarmoff, J.A.: Self-limiting growth of metal fluoride thin films by oxidation reactions employing molecular precursors. Phys. Rev. Lett. 85(7), 1492–1495 (2000). https://doi.org/10.1103/PhysRevLett.85.1492

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  24. Kitajou, A., Komatsu, H., Nagano, R., Okada, S.: Synthesis of FeOF using roll-quenching method and the cathode properties for lithium-ion battery. Power. Sources 243, 494–498 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.053

    Article  CAS  Google Scholar 

  25. Cao, W., Tan, O.K., Pan, J.S., Zhu, W., Reddy, C.V.G.: XPS characterization of x alpha-FeO3-(1−x)ZrO2 for oxygen gas sensing application. Mater. Chem. Phys. 75(1–3), 67–70 (2002). https://doi.org/10.1016/S0254-0584(02)00032-9

    Article  CAS  Google Scholar 

  26. Badway, F., Cosandey, F., Pereira, N., Amatucci, G.G.: Carbon metal fluoride nanocomposites - high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. Electrochem. Soc. 150(10), A1318–A1327 (2003). https://doi.org/10.1149/1.1602454

    Article  CAS  Google Scholar 

  27. Vimont, A., Lavalley, J.C., Francke, L., Demourgues, A., Tressaud, A., Daturi, M.: Infrared study of the surface properties of HTB-type Al-, Cr-, Fe-hydroxyfluorides. Phys. Chem. B 108(10), 3246–3255 (2004). https://doi.org/10.1021/jp036496z

    Article  CAS  Google Scholar 

  28. Jiang, J., Li, L.P., Xu, M.W., Zhu, J.H., Li, C.M.: In situ packaging FeF, into sack-like carbon nanoreactors: a smart way to make soluble fluorides applicable to aqueous batteries. Acs Appl. Mater. Interfaces 8(6), 3874–3882 (2016). https://doi.org/10.1021/acsami.5b10737

    Article  CAS  PubMed  Google Scholar 

  29. Guan, T.X., Zhao, L., Zhou, Y., Qiu, X.M., Wu, J., Wu, G., Bao, N.Z.: Hetero-packing nanostructures of iron (III) fluoride nanocomposite cathode for high-rate and long-life rechargeable lithium-ion batteries. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202301680

    Article  Google Scholar 

  30. Kim, S.H., Choi, J.H., Park, S.H., Ahn, T.Y., Cheong, H.W., Yoon, Y.S.: FeF3/(acetylene black and multi-walled carbon nanotube) composite for cathode active material of thermal battery through formation of conductive network channels. Nanomater. 13(20), 2783 (2023). https://doi.org/10.3390/nano13202783

    Article  CAS  Google Scholar 

  31. Li, C.L., Gu, L., Tsukimoto, S., van Aken, P.A., Maier, J.: Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for Lithium batteries. Adv. Mater. 22(33), 3650 (2010). https://doi.org/10.1002/adma.201000535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially assisted by [National Natural Science Foundation of China #1] under Grant [No.21203095], the [Jiangsu National Synergetic Innovation Center for Advanced Materials #2] (SICAM) and [the Priority Academic Program Development of Jiangsu Higher Education Institutions #3].

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Experiments, Methodology, Writing—review &editing. JS: Investigation, Experiments, Writing—original draft. XX: Methodology, Resources. XL: Validation Visualization. JC: Investigation, Methodology. CZ: Writing—review & editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Chengfei Zhu.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Shi, J., Xiao, X. et al. Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries. Electron. Mater. Lett. 20, 306–316 (2024). https://doi.org/10.1007/s13391-023-00478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00478-5

Keywords

Navigation