Skip to main content
Log in

Enhanced Computation of the Proximity Operator for Perspective Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we provide an explicit expression for the proximity operator of a perspective of any proper lower semicontinuous convex function defined on a Hilbert space. Our computation enhances and generalizes known formulae for the case when the Fenchel conjugate of the convex function has an open domain or when it is radial. We show numerically that our approach is more efficient than previous approaches in the literature and we provide several examples of nonradial functions for which the domain of its conjugate is not open and we compute the proximity operators of their perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu, F., Caselles, V., Mazón, J.M., Moll, S.: Finite propagation speed for limited flux diffusion equations. Arch. Ration. Mech. Anal. 182(2), 269–297 (2006). https://doi.org/10.1007/s00205-006-0428-3

    Article  MathSciNet  Google Scholar 

  2. Auslender, A., Cominetti, R., Haddou, M.: Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22(1), 43–62 (1997). https://doi.org/10.1287/moor.22.1.43

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48311-5

    Book  Google Scholar 

  4. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000). https://doi.org/10.1007/s002110050002

    Article  MathSciNet  Google Scholar 

  5. Benamou, J.D., Carlier, G., Laborde, M.: An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM Proc. Surv. 54, 1–17 (2016). https://doi.org/10.1051/proc/201654001

    Article  MathSciNet  Google Scholar 

  6. Bercher, J.F.: Some properties of generalized fisher information in the context of nonextensive thermostatistics. Phys. A 392(15), 3140–3154 (2013). https://doi.org/10.1016/j.physa.2013.03.062

    Article  MathSciNet  Google Scholar 

  7. Borwein, J.M., Lewis, A.S., Nussbaum, R.D.: Entropy minimization, \(DAD\) problems, and doubly stochastic kernels. J. Funct. Anal. 123(2), 264–307 (1994). https://doi.org/10.1006/jfan.1994.1089

    Article  MathSciNet  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441

    Book  Google Scholar 

  9. Brenier, Y.: Extended Monge-Kantorovich theory. In: L. Ambrosio, L.A. Caffarelli, Y. Brenier, G. Buttazzo, C. Villani, S. Salsa (eds.) Optimal Transportation and Applications (Martina Franca, 2001) Lecture Notes in Math., vol. 1813, pp. 91–121. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-44857-0_4

  10. Briceño-Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with local couplings. SIAM J. Control. Optim. 56(2), 801–836 (2018). https://doi.org/10.1137/16M1095615

    Article  MathSciNet  Google Scholar 

  11. Briceño-Arias, L.M., Combettes, P.L., Silva, F.J.: Proximity operators of perspective functions with nonlinear scaling (2023). arXiv:2303.05337 [math.OC]

  12. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling. In: Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., Rampazzo, F. (eds.) Analysis and Geometry in Control Theory and its Applications, pp. 111–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-06917-3_5

    Chapter  Google Scholar 

  13. Carlier, G., Pegon, P., Tamanini, L.: Convergence rate of general entropic optimal transport costs. Calc. Var. Partial Differ. Equ. 62(4), 116 (2023). https://doi.org/10.1007/s00526-023-02455-0

    Article  MathSciNet  Google Scholar 

  14. Carrillo, J.A., Craig, K., Wang, L., Wei, C.: Primal dual methods for Wasserstein gradient flows. Found. Comput. Math. 22(2), 389–443 (2022). https://doi.org/10.1007/s10208-021-09503-1

    Article  MathSciNet  Google Scholar 

  15. Cattiaux, P., Gamboa, F.: Large deviations and variational theorems for marginal problems. Bernoulli 5(1), 81–108 (1999). https://doi.org/10.2307/3318614

    Article  MathSciNet  Google Scholar 

  16. Combettes, P.L.: Perspective functions: properties, constructions, and examples. Set Valued Var. Anal. 26(2), 247–264 (2018). https://doi.org/10.1007/s11228-017-0407-x

    Article  MathSciNet  Google Scholar 

  17. Combettes, P.L., Müller, C.L.: Perspective functions: proximal calculus and applications in high-dimensional statistics. J. Math. Anal. Appl. 457(2), 1283–1306 (2018). https://doi.org/10.1016/j.jmaa.2016.12.021

    Article  MathSciNet  Google Scholar 

  18. Combettes, P.L., Müller, C.L.: Perspective maximum likelihood-type estimation via proximal decomposition. Electron. J. Stat. 14(1), 207–238 (2020). https://doi.org/10.1214/19-EJS1662

    Article  MathSciNet  Google Scholar 

  19. Cominetti, R., Martín, J.: Asymptotic analysis of the exponential penalty trajectory in linear programming. Math. Program. 67(1–3), 169–187 (1994). https://doi.org/10.1007/BF01582220

    Article  MathSciNet  Google Scholar 

  20. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  Google Scholar 

  21. Dacorogna, B., Maréchal, P.: The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity. J. Convex Anal. 15(2), 271–284 (2008)

    MathSciNet  Google Scholar 

  22. Effros, E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA 106(4), 1006–1008 (2009). https://doi.org/10.1073/pnas.080796510

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  23. El Gheche, M., Chierchia, G., Pesquet, J.C.: Proximity operators of discrete information divergences. IEEE Trans. Inform. Theory 64(2), 1092–1104 (2018). https://doi.org/10.1109/TIT.2017.2782789

    Article  MathSciNet  Google Scholar 

  24. Elfving, T.: On some methods for entropy maximization and matrix scaling. Linear Algebra Appl. 34, 321–339 (1980). https://doi.org/10.1016/0024-3795(80)90171-8

    Article  MathSciNet  Google Scholar 

  25. Erlander, S.: Entropy in linear programs. Math. Program. 21(2), 137–151 (1981). https://doi.org/10.1007/BF01584236

    Article  MathSciNet  Google Scholar 

  26. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998). https://doi.org/10.1137/S0036141096303359

    Article  MathSciNet  Google Scholar 

  27. Kuroda, H., Kitahara, D.: Block-sparse recovery with optimal block partition. IEEE Trans. Signal Process. 70, 1506–1520 (2022). https://doi.org/10.1109/TSP.2022.3156283

    Article  MathSciNet  Google Scholar 

  28. Kuroda, H., Kitahara, D., Hirabayashi, A.: A convex penalty for block-sparse signals with unknown structures. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5430–5434. IEEE (2021). https://doi.org/10.1109/ICASSP39728.2021.9414340

  29. Léonard, C.: Minimization of energy functionals applied to some inverse problems. Appl. Math. Optim. 44(3), 273–297 (2001). https://doi.org/10.1007/s00245-001-0019-5

    Article  MathSciNet  Google Scholar 

  30. Léonard, C.: Minimization of entropy functionals. J. Math. Anal. Appl. 346(1), 183–204 (2008). https://doi.org/10.1016/j.jmaa.2008.04.048

    Article  MathSciNet  Google Scholar 

  31. McCann, R.J., Puel, M.: Constructing a relativistic heat flow by transport time steps. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(6), 2539–2580 (2009). https://doi.org/10.1016/j.anihpc.2009.06.006

  32. Micchelli, C.A., Morales, J.M., Pontil, M.: Regularizers for structured sparsity. Adv. Comput. Math. 38(3), 455–489 (2013). https://doi.org/10.1007/s10444-011-9245-9

    Article  MathSciNet  Google Scholar 

  33. Owen, A.B.: A robust hybrid of lasso and ridge regression. In: J.S. Verducci, X. Shen, J. Lafferty (eds.) Prediction and discovery, vol. 443, pp. 59–71. American Mathematical Society, Providence (2007). https://doi.org/10.1090/conm/443/08555

  34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  35. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123, 46–63 (1966). https://doi.org/10.1090/S0002-9947-1966-0192318-X

    Article  MathSciNet  Google Scholar 

  36. Villani, C.: Topics in optimal transportation. American Mathematical Society, Providence (2003). https://doi.org/10.1090/gsm/058

    Book  Google Scholar 

Download references

Acknowledgements

The work of Luis M. Briceño-Arias is supported by Centro de Modelamiento Matemático (CMM), FB210005, BASAL fund for centers of excellence, FONDECYT 1190871, and FONDECYT 1230257 from ANID-Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Briceño-Arias.

Additional information

Communicated by Jean-Pierre Crouzeix.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño-Arias, L.M., Vivar-Vargas, C. Enhanced Computation of the Proximity Operator for Perspective Functions. J Optim Theory Appl 200, 1078–1099 (2024). https://doi.org/10.1007/s10957-023-02361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02361-7

Keywords

Mathematics Subject Classification

Navigation