Skip to main content

Advertisement

Log in

Preparation and Physicochemical Characterizations of Niosomal Benzoyl Peroxide and Clindamycin Phosphate Formulation for Acne Vulgaris

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to prepare and characterize a topical niosomal formulation of benzoyl peroxide (BP) and clindamycin phosphate (CMP) for the treatment of acne vulgaris.

Methods

Different combinations of Polyoxyethylene Alkyl Ethers (Brij), sorbitan esters (Span), and their ethoxylated derivatives (Tween), and cholesterol were used to produce the niosomes. Encapsulation, release, chemical and physical stabilities of the prepared formulations were studied.

Results

The studied niosomes exhibited high physical stability, as evidenced by unchanged size distribution over a six-month storage period. Formulations composed of Brij-52 combined with 50 mol% of cholesterol showed the highest encapsulation efficiency for both CMP (81.5 ± 7.4%) and BP (95.6 ± 3.5%). The release rate of CMP was found to be greater than BP.

Conclusions

It was concluded that niosomes could serve as stable carriers for topical drug delivery of CMP and BP, specifically in the treatment of acne vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pusey WA. The principles and practice of dermatology. D. Appleton and Company; 1917.

  2. Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474–85.

    Article  CAS  PubMed  Google Scholar 

  3. Williams HC, Dellavalle RP, Garner S. Acne Vulgaris. Lancet. 2012;379(9813):361–72.

    Article  PubMed  Google Scholar 

  4. Benner N, Sammons D. Overview of the treatment of acne vulgaris. Osteopath Fam Physician. 2013;5(5):185–90.

    Article  Google Scholar 

  5. Dawson AL, Dellavalle RP. Acne Vulgaris. BMJ, vol. 346, 2013.

  6. Pandey P, Easwari TS, Tyagi S. Formulation Development and Evaluation of Niosomal anti-acne gel of clindamycin phosphate. J Homepage www Ijrpr com ISSN, vol. 2582, p. 7421.

  7. Eichenfield LF, et al. Preadolescent moderate acne vulgaris: a randomized trial of the efficacy and safety of topical adapalene-benzoyl peroxides. J Drugs Dermatology JDD. 2013;12(6):611–8.

    CAS  PubMed  Google Scholar 

  8. Zouboulis CC, Katsambas AD, Kligman AM. Pathogenesis and treatment of acne and rosacea. Springer; 2014.

  9. Mahmood NF, Shipman AR. The age-old problem of acne, Int. J. women’s dermatology, vol. 3, no. 2, pp. 71–76, 2017.

  10. Burns T, Breathnach SM, Cox N, Griffiths C. Rook’s textbook of dermatology. John Wiley & Sons; 2008.

  11. Stuart B, et al. Topical preparations for the treatment of mild-to‐moderate acne vulgaris: systematic review and network meta‐analysis. Br J Dermatol. 2021;185(3):512–25.

    Article  CAS  PubMed  Google Scholar 

  12. Latter G, Grice JE, Mohammed Y, Roberts MS, Benson HAE. Targeted topical delivery of retinoids in the management of acne vulgaris: current formulations and novel delivery systems. Pharmaceutics. 2019;11(10):490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang D, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009;30(30):6035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mills Jr OH, Kligman AM, Pochi P, Comite H. Comparing 2.5%, 5%, and 10% benzoyl peroxide on inflammatory acne vulgaris. Int J Dermatol. 1986;25(10):664–7.

    Article  CAS  PubMed  Google Scholar 

  15. Moghadasipour M, Zadeh RK, Noorbakhsh F. Validation the method of measuring the amount of clindamycin in the liposomal formulation. Iran J Biol Sci. 2018;13(2):41–8.

    Google Scholar 

  16. Lee HJ, Kim JY, Park KD, Lee WJ. Randomized controlled double-blind study of a cleanser composed of 5‐aminolevulinic acid and peptides on mild and moderate acne vulgaris. J Cosmet Dermatol. 2020;19(7):1745–50.

    Article  PubMed  Google Scholar 

  17. Mokhtari F, et al. The effectiveness of adapalene 0.1% with intense pulsed light versus benzoyl peroxide 5% with intense pulsed light in the treatment of acne vulgaris: a comparative study. J Res Med Sci. 2019;24(1):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandu VP, Arunachalam A, Jeganath S, Yamini K, Tharangini K, Chaitanya G. Niosomes: a novel drug delivery system. Int J Nov Trends Pharm Sci. 2012;2(1):25–31.

    Google Scholar 

  19. Ge X, Wei M, He S, Yuan W-E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sutar SN, Gavhane YN. NOVEL DRUG DELIVERY SYSTEM-NIOSOMES, 2022.

  21. Vyas A, Kumar Sonker A, Gidwani B. Carrier-based drug delivery system for treatment of acne, Sci. world J, vol. 2014, 2014.

  22. Rietschel RL, Duncan SH. Clindamycin phosphate used in combination with tretinoin in the treatment of acne. Int J Dermatol. 1983;22(1):41–3.

    Article  CAS  PubMed  Google Scholar 

  23. Whitney KM, Ditre CM. Anti-inflammatory properties of Clindamycin: a review of its use in the treatment of Acne Vulgaris. Clin Med Insights Dermatology, no. 4, 2011.

  24. Rezaeizadeh M, Eskanlou A, Soltani H, Pardakhty A, Moshafi M-H, Hosseini-Nejad F. Preparation of stable clindamycin phosphate niosomes by combination of Sorbitan Esters and their ethoxylaed derivatives. J Pharm Innov. 2021. https://doi.org/10.1007/s12247-021-09594-x.

    Article  Google Scholar 

  25. Sharma R, Dua JS, Prasad DN, Kaushal S, Puri A. Formulation and evaluation of clindamycin phosphate niosomes by using reverse phase evaporation method. J Drug Deliv Ther. 2019;9:3–s.

    Google Scholar 

  26. Goodman Gillman A, JG LLEH. The pharmacological basis of therapeutics 10 th edition. Publ by Int Ed. 2001;690:573–4.

    Google Scholar 

  27. Jigar V, Puja V, Krutika S. Formulation and evaluation of topical niosomal gel of erythromycin. Int J Pharm Pharm Sci. 2011;3(1):123–6.

    Google Scholar 

  28. Leccia MT, Auffret N, Poli F, Claudel J, Corvec S, Dreno B. Topical acne treatments in Europe and the issue of antimicrobial resistance. J Eur Acad Dermatology Venereol. 2015;29(8):1485–92.

    Article  CAS  Google Scholar 

  29. Brammann C, Müller-Goymann CC. An update on formulation strategies of benzoyl peroxide in efficient acne therapy with special focus on minimizing undesired effects. Int J Pharm. 2020;578:119074.

    Article  CAS  PubMed  Google Scholar 

  30. Fakhouri T, Yentzer BA, Feldman SR. Advancement in benzoyl peroxide-based acne treatment: methods to increase both efficacy and tolerability. J Drugs Dermatology JDD. 2009;8(7):657–61.

    PubMed  Google Scholar 

  31. Burkhart CN, Specht K, Neckers D. Synergistic activity of benzoyl peroxide and erythromycin. Skin Pharmacol Physiol. 2000;13(5):292–6.

    Article  CAS  Google Scholar 

  32. Mohammadi S, et al. Niosomal benzoyl peroxide and clindamycin lotion versus niosomal clindamycin lotion in treatment of acne vulgaris: a randomized clinical trial. Adv Pharm Bull. 2019;9(4):578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohammadi S, et al. Evaluation of efficacy of niosomal clindamycin phosphate 1% solution in comparison to conventional clindamycin phosphate 1% solution in the treatment of acne vulgaris: a randomized controlled trial. J Pakistan Assoc Dermatologists. 2020;30(1):64–71.

    Google Scholar 

  34. Del Rosso JQ. Study results of benzoyl peroxide 5%/clindamycin 1% topical gel, adapalene 0.1% gel, and use in combination for acne vulgaris. J Drugs Dermatology JDD. 2007;6(6):616–22.

    Google Scholar 

  35. Mohd Nor NH, Aziz Z. A systematic review of benzoyl peroxide for acne vulgaris. J Dermatolog Treat. 2013;24(5):377–86.

    Article  CAS  PubMed  Google Scholar 

  36. Dutil M. Benzoyl peroxide: enhancing antibiotic efficacy in acne management. Skin Therapy Lett. 2010;15(10):5–7.

    PubMed  Google Scholar 

  37. Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods. Pharmaceutics. 2018;10(4):185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nowroozi F, Almasi A, Javidi J, Haeri A, Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran J Pharm Res IJPR. 2018;17(Suppl2):1.

    CAS  PubMed  Google Scholar 

  39. Diskaeva EI, Vecher OV, Diskaeva EN, Bazikov IA, Elbekyan KS. Review of methods for size and morphology determination of vesicles in niosome dispersion. J Sci Tech Inf Technol Mech Opt. 2020;127(3):377–81.

    Google Scholar 

  40. Barazandeh Tehrani M, Namadchian M, Fadaye Vatan S, Souri E. Derivative spectrophotometric method for simultaneous determination of clindamycin phosphate and tretinoin in pharmaceutical dosage forms. DARU J Pharm Sci. 2013;21:1–7.

    Article  Google Scholar 

  41. García-Manrique P, Machado ND, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf B Biointerfaces. 2020;186:110711.

    Article  PubMed  Google Scholar 

  42. Gupta A, Gulati M, Pandey NK. A validated UV spectrophotometric method for simultaneous estimation of tretinoin and benzoyl peroxide in bulk and semisolid dosage form. Rasayan J Chem. 2009;2(3):649–54.

    CAS  Google Scholar 

  43. Morakul B, Teeranachaideekul V, Buraphacheep Junyaprasert V. Niosomal delivery of pumpkin seed oil: development, characterisation, and physical stability. J Microencapsul. 2019;36(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  44. Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res, vol. 5, 2016.

  45. Bonferoni MC, Rossi S, Ferrari F, Caramella C. A modified Franz diffusion cell for simultaneous assessment of drug release and washability of mucoadhesive gels. Pharm Dev Technol. 1999;4(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  46. Katakam LNR, Katari NK. Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC. Talanta Open. 2021;4:100056.

    Article  Google Scholar 

  47. Bartosova L, Bajgar J. Transdermal drug delivery in vitro using diffusion cells. Curr Med Chem. 2012;19(27):4671–7.

    Article  CAS  PubMed  Google Scholar 

  48. Özsoy Y, Güngör S, Cevher E. Vehicle effects on in vitro release of tiaprofenic acid from different topical formulations. Farm. 2004;59(7):563–6.

    Article  Google Scholar 

  49. Commission USP. The United States Pharmacopeia (USP41), Rockville M: the United States Pharmacopeia Convention, 2018.

  50. Bae SE, Cho SY, Won YD, Lee SH, Park HJ. A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT-Food Sci Technol. 2012;46(2):532–5.

    Article  CAS  Google Scholar 

  51. Hsu H-C, Chien C-S. Validation of analytical methods: a simple model for HPLC assay methods. J Food Drug Anal. 1994;2(3):161.

    CAS  Google Scholar 

  52. Bressolle F, Bromet-Petit M, Audran M. Validation of liquid chromatographic and gas chromatographic methods applications to pharmacokinetics. J Chromatogr B Biomed Sci Appl. 1996;686(1):3–10.

    Article  CAS  Google Scholar 

  53. Al-Rubaie MS, Abdullah TS. Multi lamellar vesicles (Mlvs) liposomes preparation by thin film hydration technique. Eng Tech J. 2014;32:550–60.

    Article  Google Scholar 

  54. Yeh M, Huang H, Liaw J, Huang M, Huang K, Hsu F. Dermal delivery by niosomes of black tea extract as a sunscreen agent. Int J Dermatol. 2013;52(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  55. Mayer LD, Hope MJ, Cullis PR, Janoff AS. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta (BBA)-Biomembranes. 1985;817(1):193–6.

    Article  CAS  PubMed  Google Scholar 

  56. Makeshwar KB, Wasankar SR. Niosome: a novel drug delivery system. Asian J Pharm Res. 2013;3(1):16–20.

    Google Scholar 

  57. Firthouse PUM, Halith SM, Wahab SU, Sirajudeen M, Mohideen SK. Formulation and evaluation of miconazole niosomes. Int J PharmTech Res. 2011;3(2):1019–22.

    Google Scholar 

  58. Uchegbu IF, Vyas SP. Erratum to ‘Non-ionic surfactant based vesicles (niosomes) in drug delivery’[Int. J. Pharm. 172 (1998) 33–70], Int. J. Pharm, vol. 176, p. 139, 1998.

  59. Moghassemi S, Hadjizadeh A. Nano-Niosomes as Nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.

    Article  CAS  PubMed  Google Scholar 

  60. Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Najafabadi AR. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharm Sci. 2011;19(6):404.

    CAS  Google Scholar 

  61. Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci. 1995;58(1):1–55.

    Article  CAS  Google Scholar 

  62. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.

    Article  Google Scholar 

  63. Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol. 2021;61:102234.

    Article  CAS  Google Scholar 

  64. Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671–89.

    Article  CAS  PubMed  Google Scholar 

  65. Uchegbu LF. Synthetic surfactant vesicles: niosomes and other non-phospholipid vesicular systems. CRC Press; 2000.

  66. Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007;328(2):130–41.

    Article  CAS  PubMed  Google Scholar 

  67. Hofland HEJ, Bouwstra JA, Gooris GS, Spies F, Talsma H, Junginger HE. Nonionic surfactant vesicles: a study of vesicle formation, characterization, and stability. J Colloid Interface Sci. 1993;161(2):366–76.

    Article  CAS  Google Scholar 

  68. Waqas MK, et al. Development and characterization of niosomal gel of fusidic acid: In-vitro and ex-vivo approaches. Des Monomers Polym. 2022;25(1):165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamauchi M, Tsutsumi K, Abe M, Uosaki Y, Nakakura M, Aoki N. Release of drugs from liposomes varies with particle size. Biol Pharm Bull. 2007;30(5):963–6.

    Article  CAS  PubMed  Google Scholar 

  70. Junyaprasert VB, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech. 2008;9:851–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diskaeva EI, Vecher OV, Bazikov I, Vakalov DS. Particle size analysis of niosomes as a function of temperature, Наносистемы: физика, химия, математика, vol. 9, no. 2, pp. 290–294, 2018.

  72. Balakrishnan P, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377:1–2.

    Article  CAS  PubMed  Google Scholar 

  73. Mura S, Manconi M, Sinico C, Valenti D, Fadda AM. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int J Pharm. 2009;380:1–2.

    Article  Google Scholar 

  74. Mura S, Pirot F, Manconi M, Falson F, Fadda AM. Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J Drug Target. 2007;15(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  75. Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  76. Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11.

    Article  CAS  PubMed  Google Scholar 

  78. Mehta SK, Jindal N, Kaur G. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes. Colloids Surf B Biointerfaces. 2011;87(1):173–9.

    Article  CAS  PubMed  Google Scholar 

  79. Mohanty D, et al. Niosomes: a Novel Trend in Drug Delivery. Res J Pharm Technol. 2018;11(11):5205–11.

    Article  Google Scholar 

  80. Devaraj GN, Parakh SR, Devraj R, Apte SS, Rao BR, Rambhau D. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci. 2002;251(2):360–5.

    Article  CAS  PubMed  Google Scholar 

  81. Pirooz P, Pardakhty A, Khademolhoseini V. Preparation and characterization of catanionic vesicles composed of cetyltrimethylammonium bromide, sodium lauryl sulfate and cholesterol. Res Pharm Sci. 2012;7(5):363.

    Google Scholar 

  82. Agarwal S, Bakshi V, Vitta P, Raghuram AP, Pandey S, Udupa N. Effect of cholesterol content and surfactant HLB on vesicle properties of niosomes. Indian J Pharm Sci. 2004;66(1):121–3.

    CAS  Google Scholar 

  83. Palozza P, Muzzalupo R, Trombino S, Valdannini A, Picci N. Solubilization and stabilization of β-carotene in niosomes: delivery to cultured cells. Chem Phys Lipids. 2006;139(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  84. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

    Article  CAS  Google Scholar 

  85. Varshosaz J, Pardakhty A, Hajhashemi V, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10(4):251–62.

    Article  CAS  PubMed  Google Scholar 

  86. Varshosaz J, Pardakhty A, Mohsen S, Baharanchi H. Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. Drug Deliv. 2005;12(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  87. Fick A. Ueber diffusion. Ann Phys, vol. 170, no. 1, pp. 59–86, 1855.

  88. Ferrence R. Diffusion theory and drug use. Addiction. 2001;96(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  89. Babu S, Fan C, Stepanskiy L, Uitto J, Papazoglou E. Effect of size at the nanoscale and bilayer rigidity on skin diffusion of liposomes. J Biomed Mater Res Part A An off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2009;91(1):140–8.

    Google Scholar 

  90. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Rezaeizadeh.

Ethics declarations

Ethical Approval

The authors confirm that this study was approved by the research ethics committee of Kerman University of Medical Sciences and certify that this study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeizadeh, M., Eskanlou, A., Pardakhty, A. et al. Preparation and Physicochemical Characterizations of Niosomal Benzoyl Peroxide and Clindamycin Phosphate Formulation for Acne Vulgaris. J Pharm Innov 19, 1 (2024). https://doi.org/10.1007/s12247-024-09807-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09807-z

Keywords

Navigation