Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray eruptions every 22 days from the nucleus of a nearby galaxy

Abstract

Galactic nuclei showing recurrent phases of activity and quiescence have recently been discovered. Some have recurrence times as short as a few hours to a day and are known as quasi-periodic X-ray eruption (QPE) sources. Others have recurrence times as long as hundreds to a thousand days and are called repeating nuclear transients. Here we present a multiwavelength overview of Swift J023017.0+283603 (hereafter Swift J0230+28), a source from which repeating and quasi-periodic X-ray flares are emitted from the nucleus of a previously unremarkable galaxy at 165 Mpc. It has a recurrence time of approximately 22 days, an intermediary timescale between known repeating nuclear transients and QPE sources. The source also shows transient radio emission, likely associated with the X-ray emission. Such recurrent soft X-ray eruptions, with no accompanying ultraviolet or optical emission, are strikingly similar to QPE sources. However, in addition to having a recurrence time that is 25 times longer than the longest-known QPE source, Swift J0230+28’s eruptions exhibit somewhat distinct shapes and temperature evolution compared to the known QPE sources. Scenarios involving extreme mass ratio inspirals are favoured over disk instability models. The source reveals an unexplored timescale for repeating extragalactic transients and highlights the need for a wide-field, time-domain X-ray mission to explore the parameter space of recurring X-ray transients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light curves of Swift J0230+28.
Fig. 2: LSP for the Swift J0230+28 light curve.
Fig. 3: NICER time-resolved spectroscopy.
Fig. 4: Time-resolved spectral properties.
Fig. 5: Phase space diagrams for QPEs and Swift J0230+28.

Similar content being viewed by others

Data availability

All the NICER and Swift data presented here are public and can be found in the NASA archives at the following URL: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl. The VLA data are available from the archives of the National Radio Astronomy Observatory at https://data.nrao.edu/portal/#/. X-shooter spectra will be available from the ESO archive after the 12 months’ proprietary period has passed. Keck/ESI data can be shared by a request to the corresponding authors. The general relativistic magnetohydrodynamic simulation data, described in Supplementary Information, ‘Accretion disk—perturber interaction’, are available by a request to the corresponding author. The data underlying the multiwavelength light curves presented in Fig. 1 are available at https://zenodo.org/records/10238766.

References

  1. Chen, T. W. et al. ATLAS21bmvp (AT 2021afkk): discovery of a fast rising candidate supernova in UGC01971 (60 Mpc). Transient Name Serv. AstroNote 300, 1–300 (2021).

    ADS  Google Scholar 

  2. Evans, P. A. et al. A real-time transient detector and the living Swift-XRT point source catalogue. Mon. Not. R. Astron. Soc. 518, 174–184 (2023).

    ADS  Google Scholar 

  3. Evans, P. A. et al. Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole. Nat. Astron. 7, 1368–1375 (2023).

  4. Evans, P. A., Campana, S. & Page, K. L. Swift J023017.0+283603: a possible tidal disruption event. Astron. Telegr. 15454, 1 (2022).

    ADS  Google Scholar 

  5. Evans, P. A., Breeveld, A. A. & Oates, S. R. Further Swift observations of the TDE candidate Swift J023017.0+283603. Astron. Telegr. 15461, 1 (2022).

    ADS  Google Scholar 

  6. Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    ADS  Google Scholar 

  7. van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).

    ADS  Google Scholar 

  8. Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I survey. Astrophys. J. 942, 9 (2023).

    ADS  Google Scholar 

  9. Guolo, M. et al. A systematic analysis of the X-ray emission in optically selected tidal disruption events: observational evidence for the unification of the optically and X-ray selected populations. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.13019 (2023).

  10. Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    ADS  Google Scholar 

  11. Horne, J. H. & Baliunas, S. L. A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757 (1986).

    ADS  Google Scholar 

  12. Gültekin, K. et al. The Mσ and ML relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009).

    ADS  Google Scholar 

  13. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    ADS  CAS  Google Scholar 

  14. Payne, A. V. et al. ASASSN-14ko is a periodic nuclear transient in ESO 253-G003. Astrophys. J. 910, 125 (2021).

    ADS  CAS  Google Scholar 

  15. Liu, Z. et al. Deciphering the extreme X-ray variability of the nuclear transient eRASSt J045650.3 − 203750. A likely repeating partial tidal disruption event. Astron. Astrophys. 669, A75 (2023).

    CAS  Google Scholar 

  16. Wevers, T. et al. Live to die another day: the rebrightening of AT 2018fyk as a repeating partial tidal disruption event. Astrophys. J. Lett. 942, L33 (2023).

    ADS  Google Scholar 

  17. Cufari, M., Coughlin, E. R. & Nixon, C. J. Using the Hills mechanism to generate repeating partial tidal disruption events and ASASSN-14ko. Astrophys. J. Lett. 929, L20 (2022).

    ADS  Google Scholar 

  18. Liu, C. et al. Tidal disruption events from eccentric orbits and lessons learned from the noteworthy ASASSN-14ko. Astrophys. J. 944, 184 (2023).

    ADS  Google Scholar 

  19. Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. Giustini, M., Miniutti, G. & Saxton, R. D. X-ray quasi-periodic eruptions from the galactic nucleus of RX J1301.9+2747. Astron. Astrophys. 636, L2 (2020).

    ADS  Google Scholar 

  21. Arcodia, R. et al. X-ray quasi-periodic eruptions from two previously quiescent galaxies. Nature 592, 704–707 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bardeen, J. M. & Petterson, J. A. The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. Lett. 195, L65 (1975).

    ADS  Google Scholar 

  23. Nixon, C., King, A., Price, D. & Frank, J. Tearing up the disk: how black holes accrete. Astrophys. J. Lett. 757, L24 (2012).

    ADS  Google Scholar 

  24. Musoke, G., Liska, M., Porth, O., van der Klis, M. & Ingram, A. Disc tearing leads to low and high frequency quasi-periodic oscillations in a GRMHD simulation of a thin accretion disc. Mon. Not. R. Astron. Soc. 518, 1656–1671 (2023).

    ADS  Google Scholar 

  25. Liska, M. T. P., Kaaz, N., Musoke, G., Tchekhovskoy, A. & Porth, O. Radiation transport two-temperature GRMHD simulations of warped accretion disks. Astrophys. J. Lett. 944, L48 (2023).

  26. Meyer, F. & Meyer-Hofmeister, E. On the elusive cause of cataclysmic variable outbursts. Astron. Astrophys. 104, L10–L12 (1981).

    ADS  Google Scholar 

  27. Sniegowska, M., Czerny, B., Bon, E. & Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 641, A167 (2020).

    ADS  CAS  Google Scholar 

  28. Śniegowska, M., Grzkedzielski, M., Czerny, B. & Janiuk, A. Modified models of radiation pressure instability in application to 10, 105, and 107M accreting black holes. Astron. Astrophys. 672, A19 (2023).

  29. Pan, X., Li, S.-L., Cao, X., Miniutti, G. & Gu, M. A disk instability model for the quasi-periodic eruptions of GSN 069. Astrophys. J. Lett. 928, L18 (2022).

    ADS  Google Scholar 

  30. Kaur, K., Stone, N. C. & Gilbaum, S. Magnetically dominated discs in tidal disruption events and quasi-periodic eruptions. Mon. Not. R. Astron. Soc. 524, 1269–1290 (2023).

    ADS  Google Scholar 

  31. Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).

    ADS  Google Scholar 

  32. Zalamea, I., Menou, K. & Beloborodov, A. M. White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation. Mon. Not. R. Astron. Soc. 409, L25–L29 (2010).

    ADS  Google Scholar 

  33. King, A. GSN 069 – A tidal disruption near miss. Mon. Not. R. Astron. Soc. 493, L120–L123 (2020).

    ADS  Google Scholar 

  34. Nauenberg, M. Analytic approximations to the mass–radius relation and energy of zero-temperature stars. Astrophys. J. 175, 417 (1972).

    ADS  Google Scholar 

  35. Suková, P., Zajaček, M., Witzany, V. & Karas, V. Stellar transits across a magnetized accretion torus as a mechanism for plasmoid ejection. Astrophys. J. 917, 43 (2021).

    ADS  Google Scholar 

  36. Linial, I. & Metzger, B. D. EMRI + TDE = QPE: periodic X-ray flares from star–disk collisions in galactic nuclei. Astrophys. J. https://doi.org/10.3847/1538-4357/acf65b (2023).

  37. Lu, W. & Quataert, E. Quasi-periodic eruptions from mildly eccentric unstable mass transfer in galactic nuclei. Mon. Not. R. Astron. Soc. 524, 6247–6266 (2023).

  38. Krolik, J. H. & Linial, I. Quasiperiodic erupters: a stellar mass-transfer model for the radiation. Astrophys. J. 941, 24 (2022).

    ADS  Google Scholar 

  39. Linial, I. & Sari, R. Unstable mass transfer from a main-sequence star to a supermassive black hole and quasiperiodic eruptions. Astrophys. J. 945, 86 (2023).

    ADS  Google Scholar 

  40. Metzger, B. D., Stone, N. C. & Gilbaum, S. Interacting stellar EMRIs as sources of quasi-periodic eruptions in galactic nuclei. Astrophys. J. 926, 101 (2022).

    ADS  Google Scholar 

  41. Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).

    ADS  Google Scholar 

  42. Coughlin, E. R. & Nixon, C. J. The gravitational instability of adiabatic filaments. Astrophys. J. Suppl. Ser. 247, 51 (2020).

    ADS  Google Scholar 

  43. Predehl, P. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 647, A1 (2021).

    CAS  Google Scholar 

  44. Sunyaev, R. et al. SRG X-ray orbital observatory. Its telescopes and first scientific results. Astron. Astrophys. 656, A132 (2021).

    CAS  Google Scholar 

  45. Yuan, W., Zhang, C., Chen, Y. & Ling, Z.The Einstein Probe Mission (Springer, 2022).

  46. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  47. Wright, E. L. A cosmology calculator for the World Wide Web. Publ. Astron. Soc. Pac. 118, 1711–1715 (2006).

    ADS  Google Scholar 

  48. Evans, P. A. et al. 1SXPS: a deep Swift X-ray telescope point source catalog with light curves and spectra. Astrophys. J. Suppl. Ser. 210, 8 (2014).

    ADS  Google Scholar 

  49. Kraft, R. P., Burrows, D. N. & Nousek, J. A. Determination of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344 (1991).

    ADS  Google Scholar 

  50. Kaastra, J. S. & Bleeker, J. A. M. Optimal binning of X-ray spectra and response matrix design. Astron. Astrophys. 587, A151 (2016).

    ADS  Google Scholar 

  51. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  52. Pasham, D. R. et al. The birth of a relativistic jet following the disruption of a star by a cosmological black hole. Nat. Astron. 7, 88–104 (2022).

    ADS  Google Scholar 

  53. Pasham, D. R. et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249–258 (2022).

    ADS  Google Scholar 

  54. Remillard, R. A. et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 163, 130 (2022).

    ADS  CAS  Google Scholar 

  55. Arnaud, K. A. XSPEC: the first ten years. Astron. Soc. Pac. Conf. Ser. 101, 17–20 (1996).

  56. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. Astron. Soc. Pac. Conf. Ser. 376, 127–130 (2007).

  57. Sheinis, A. I. et al. ESI, a new Keck Observatory echellette spectrograph and imager. Publ. Astron. Soc. Pac. 114, 851–865 (2002).

    ADS  Google Scholar 

  58. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Google Scholar 

  59. Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138–147 (2004).

    ADS  Google Scholar 

  60. Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017).

    ADS  CAS  Google Scholar 

  61. Prugniel, P. & Soubiran, C. A database of high and medium-resolution stellar spectra. Astron. Astrophys. 369, 1048–1057 (2001).

    ADS  CAS  Google Scholar 

  62. Prugniel, P., Soubiran, C., Koleva, M. & Le Borgne, D. New release of the ELODIE library: Version 3.1. Preprint at arXiv https://doi.org/10.48550/arXiv.astro-ph/0703658 (2007).

  63. Wevers, T. et al. Black hole masses of tidal disruption event host galaxies. Mon. Not. R. Astron. Soc. 471, 1694–1708 (2017).

    ADS  CAS  Google Scholar 

  64. Wevers, T. et al. Black hole masses of tidal disruption event host galaxies II. Mon. Not. R. Astron. Soc. 487, 4136–4152 (2019).

    ADS  CAS  Google Scholar 

  65. French, K. D., Wevers, T., Law-Smith, J., Graur, O. & Zabludoff, A. I. The host galaxies of tidal disruption events. Space Sci. Rev. 216, 32 (2020).

    ADS  Google Scholar 

  66. Yao, Y. et al. The tidal disruption event AT2021ehb: evidence of relativistic disk reflection, and rapid evolution of the disk-corona system. Astrophys. J. 937, 8 (2022).

  67. Worthey, G., Faber, S. M., Gonzalez, J. J. & Burstein, D. Old stellar populations. V. Absorption feature indices for the complete Lick/IDS sample of stars. Astrophys. J. Suppl. Ser. 94, 687 (1994).

    ADS  CAS  Google Scholar 

  68. Hammerstein, E. et al. Tidal disruption event hosts are green and centrally concentrated: signatures of a post-merger system. Astrophys. J. Lett. 908, L20 (2021).

    ADS  CAS  Google Scholar 

  69. Wevers, T., Pasham, D. R., Jalan, P., Rakshit, S. & Arcodia, R. Host galaxy properties of quasi-periodically erupting X-ray sources. Astron. Astrophys. 659, L2 (2022).

    ADS  CAS  Google Scholar 

  70. Barlow, R. J. Asymmetric statistical errors. Stat. Probl. Part. Phys. Astrophys. Cosmol. https://doi.org/10.1142/9781860948985_0013 (2004).

  71. Kelly, B. C. Some aspects of measurement error in linear regression of astronomical sata. Astrophys. J. 665, 1489–1506 (2007).

    ADS  Google Scholar 

  72. Kara, E., Dai, L., Reynolds, C. S. & Kallman, T. Ultrafast outflow in tidal disruption event ASASSN-14li. Mon. Not. R. Astron. Soc. 474, 3593–3598 (2018).

    ADS  CAS  Google Scholar 

  73. Predehl, P. & Schmitt, J. H. M. M. X-raying the interstellar medium: ROSAT observations of dust scattering halos. Astron. Astrophys. 293, 889–905 (1995).

    ADS  Google Scholar 

  74. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  75. Véron-Cetty, M. P. & Véron, P. A catalogue of quasars and active nuclei: 13th edition. Astron. Astrophys. 518, A10 (2010).

    Google Scholar 

  76. Flesch, E. W. The Million Quasars (Milliquas) v7.2 Catalogue, now with VLASS associations. The inclusion of SDSS-DR16Q quasars is detailed. Preprint at arXiv https://doi.org/10.48550/arXiv.2105.12985 (2021).

  77. Saxton, R. D. et al. HILIGT, upper limit servers. I Overview. Astron. Comput. 38, 100531 (2022).

    ADS  Google Scholar 

  78. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Google Scholar 

  79. Stern, D. et al. Mid-infrared selection of active galactic nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753, 30 (2012).

    ADS  Google Scholar 

  80. Mainzer, A. et al. NEOWISE observations of near-Earth objects: preliminary results. Astrophys. J. 743, 156 (2011).

    ADS  Google Scholar 

  81. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    ADS  CAS  Google Scholar 

  82. Cid Fernandes, R., Stasińska, G., Mateus, A. & Vale Asari, N. A comprehensive classification of galaxies in the Sloan Digital Sky Survey: how to tell true from fake AGN? Mon. Not. R. Astron. Soc. 413, 1687–1699 (2011).

    ADS  Google Scholar 

  83. Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A. & Trevena, J. Theoretical modeling of starburst galaxies. Astrophys. J. 556, 121–140 (2001).

    ADS  CAS  Google Scholar 

  84. Cid Fernandes, R. et al. Alternative diagnostic diagrams and the ‘forgotten’ population of weak line galaxies in the SDSS. Mon. Not. R. Astron. Soc. 403, 1036–1053 (2010).

    ADS  Google Scholar 

  85. Kewley, L. J., Groves, B., Kauffmann, G. & Heckman, T. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 372, 961–976 (2006).

    ADS  CAS  Google Scholar 

  86. Kaiser, N. et al. Pan-STARRS: a large synoptic survey telescope array. In Proc. Survey and Other Telescope Technologies and Discoveries Vol. 4836 (eds Tyson, J. A. & Wolff, S.) 154–164 (Society of Photo-Optical Instrumentation Engineers, 2002).

  87. Cutri, R. M. et al. VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003). VizieR Online Data Catalog II/246 (2003).

  88. Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (2013).

  89. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS  Google Scholar 

  90. Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    ADS  CAS  Google Scholar 

  91. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Google Scholar 

  92. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  CAS  Google Scholar 

  93. Pennell, A., Runnoe, J. C. & Brotherton, M. S. Updating quasar bolometric luminosity corrections. III. [O iii] bolometric corrections. Mon. Not. R. Astron. Soc. 468, 1433–1441 (2017).

    ADS  CAS  Google Scholar 

  94. Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).

    Google Scholar 

  95. Voges, W. et al. The ROSAT all-sky survey bright source catalogue. Astron. Astrophys. 349, 389–405 (1999).

    ADS  Google Scholar 

  96. Saxton, R. D. et al. The first XMM-Newton slew survey catalogue: XMMSL1. Astron. Astrophys. 480, 611–622 (2008).

    ADS  Google Scholar 

  97. Chakraborty, J. et al. Possible X-ray quasi-periodic eruptions in a tidal disruption event candidate. Astrophys. J. Lett. 921, L40 (2021).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

During the refereeing process of this manuscript, Evans et al. 2023 (ref. 3) published a paper presenting a focused investigation of Swift J0230+28. Those authors’ dataset does not include our NICER and radio (VLA) data, but their science case and physical interpretation are like ours. M.G. and S.G. are supported in part by NASA (Grant Nos. 80NSS23K0621 and 80NSSC22K0571). D.R.P. was supported by NASA for this work (Grant No. 80NSSC22K0961). D.R.P. and R.R. acknowledge support from NASA (Grant No. 80NSSC19K1287). M.Z. was supported by the Czech Science Foundation through Junior Star Grant No. GM24-10599M. T.W. warmly thanks the Space Telescope Science Institute for its hospitality during part of this work. P.S. has been supported by the Lumina Quaeruntur fellowship of the Czech Academy of Sciences (No. LQ100032102). This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through e-INFRA CZ (Grant Nos. 90140 and LM2023047 to V.K.). V.W. was supported by Charles University (Research Programme PRIMUS 23/SCI/019). R.A. acknowledges support from NASA through the NASA Einstein Fellowship (Grant No. HF2-51499) as awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA (Contract No. NAS5-26555). This work was supported by the Australian government through the Australian Research Council’s Discovery Projects funding scheme (Grant No. DP200102471). E.R.C. acknowledges support from the NSF (Grant No. AST-2006684) and from the Oakridge Associated Universities through a Ralph E. Powe Junior Faculty Enhancement Award. E.C.F. is supported by NASA (Award No. 80GSFC21M0002). K.D.A. acknowledges support from the NSF (Grant No. AST-2307668). We recognize and acknowledge the cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NICER is a 0.2–12 keV X-ray telescope operating on the International Space Station. The NICER mission and portions of the NICER science team activities are funded by NASA. Observations were made with European Southern Observatory (ESO) telescopes at La Silla Paranal Observatory under programme ID 110.2599. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Contributions

M.G. led the overall project, wrote a large portion of the paper, performed part of the data analyses and was the principal investigator (PI) of the NICER DDT proposals. D.R.P. reduced the NICER data and performed part of the X-ray analyses. M.Z. and E.R.C. led the theoretical and modelling portion of the project and wrote parts of the paper. V.W., P.S. and V.K. contributed to the modelling and theory portion of the paper. T.W. was the PI of the VLT DDT programme and wrote part of the paper. S.v.V., K.D.A. (PI) and J.M.J. are the team leads of the VLA programme. S.v.V. performed the radio data reduction and analyses. R.R., K.G. and E.C.F. performed the NICER observations. S.G., F.T., Y.Y. and R.A. contributed to gathering, analysing and interpreting data as well as writing the paper and discussions.

Corresponding author

Correspondence to Muryel Guolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Margherita Giustini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Constraint on the beginning of the eruptions in Swift J0230+28.

Historical X-ray light curve, 3σ upper limits from non-detection in 1990 by RASS (pink triangle), in 2005 by XMM-Newton-Slew survey (green triangle) and multiple Swift/XRT observations between 1 December 2021 and 8 January 2022 (red triangles). The multiple consecutive non-detections of XRT constrain that the eruptions may have started between 8 January and 22 June 2022 – date of the first detection by Swift/XRT (blue points).

Extended Data Fig. 2 Eruption shape fitting.

Left: Fit of asymmetric Gaussian profile to the six best-sampled eruptions: around epochs E3, E4, E5, E6, E10, and E11. Right: ratio of σ+ and σ showing the slight asymmetric nature of Swift J0230+28’s eruption. Error-bars represent 1σ uncertainty.

Extended Data Fig. 3 Residuals of the stacked spectral analyses.

The order (left to right panels) represent distinct eruptions while the color and vertical panels represent distinct phases of each eruption: orange (rises), cyan (peaks) and gold (decays). The order and colors are the same as in Fig. 1. Error-bars represent 1σ uncertainty.

Extended Data Fig. 4 Radio (VLA) images.

A transient radio source is detected in the second radio observation (middle panel) on MJD 59842 with a flux of 93 ± 7μJy (13σ detection). No source is detected in the first and third observations (left and right panels), with upper limits of 15 μJy and 25 μJy respectively. The orange cross marks the peak of the X-ray emission, and the orange circle the Kron radius (12) of the host galaxy.

Extended Data Fig. 5 Swift J0230+28 Position and host identification.

Top left: Swift/XRT stacked images. Yellow 47 circle represents the 90% region of the XRT point spread function, and was the radius used for extraction. Green circle is the NICER FoV, no other source is present. Top Right: Pan-STARRS i/g/r bands composed image of Swift J0230+28’s host galaxy. Red cross show the location of the peak of the XRT emission and red circle (radius = 3.4) represents the 2.7σ uncertainty on the position. The X-ray emission is consistent with the nucleus of the galaxy. Bottom: Continuum normalized X-shooter optical spectrum of the nuclear 1 of the host galaxy, in the Hβ+[O III] (left) and Hα+[N II] (right) regions.

Extended Data Fig. 6 Diagnostic diagrams of the host galaxy.

Top: Swift J0230+28 in the BPT diagnostic diagram, located above the83 theoretical upper limit for star-formation ionization (red continuous line). Black diamonds represent the 4 known QPE hosts in all panels69. Middle: Swift J0230+28 in the WHAN diagnostic diagram, further showing that the nucleus likely hosts a weak AGN. Bottom: the Lick Hδ absorption index as a function of Hα EW diagram. Grey points show SDSS galaxies for reference; blue circles represent TDE host galaxies. The black dash-delimited (solid) box indicates where QBS (E+A) galaxies are located. These galaxies make up 2.3% and 0.2% of the selected SDSS galaxies, respectively. Error-bars are 1σ uncertainties in all panels.

Extended Data Fig. 7 Broad-band spectral energy distribution (SED) of host galaxy.

Red points show the observed archival photometry, black point the maximum a posteriori (MAP) best-fitted mode, and grey line the MAP best-fitted spectrum. Best-fitted parameters (see text for details) for the model are shown in the lower right. Error-bars are 1σ uncertainties.

Extended Data Fig. 8 Comparison of QPEs light curves.

Top: XMM-Newton-pn light curve of eRO-QPE2. Center: NICER light curve of eRO-QPE1. Bottom: Swift/XRT light curves of Swift J0230+28. All three panels show six consecutive eruptions for each source, the distinct time scales are clearly given the x-axis range: 0.6 days for eRO-QPE2, 4.5 days for eRO-QPE1 and 120 days for Swift J0230+28. Error-bars are 1σ uncertainties.

Extended Data Table 1 Summary of time-resolved X-ray spectra analyses with absorbed thermal model on stacked spectra
Extended Data Table 2 Properties of Swift J0230+28 as compared to quasi-periodic eruption sources (QPEs)

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1 and 2 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guolo, M., Pasham, D.R., Zajaček, M. et al. X-ray eruptions every 22 days from the nucleus of a nearby galaxy. Nat Astron 8, 347–358 (2024). https://doi.org/10.1038/s41550-023-02178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02178-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing