Skip to main content

Advertisement

Log in

Potential application of Latin American silvopastoral systems experiences for improving ruminant farming in Nigeria: a review

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In a world marked by shifting climate patterns, a growing human population, and rising demand for ruminant-derived protein, producers face the need to implement strategies that enhance productivity, reduce greenhouse gas emissions (GHGs), promote adaptability, and improve the sustainability of milk and meat production while optimizing resource use. One promising strategy to address these challenges is the adoption of silvopastoral production systems, which combine livestock with trees and shrubs. These systems are widely used in Latin America due to their proven benefits in terms of production, reduced emission intensity, land utilization efficiency, and other ecosystem services. Transferring technology from one region to another necessitates adapting these techniques to suit the receiving environment. This review suggests that the successful silvopastoral systems employed in the Latin America context can be effectively introduced in Nigeria, offering potential advantages for livestock owners. The research encompassed in this review demonstrates that the utilization of silvopastoral systems in ruminant farming can contribute to achieving several sustainable development goals, including enhancing food security, increasing milk and meat yields, supporting conservation efforts, bolstering biodiversity, and reducing GHG emissions. At the level of individual farms, the adoption of silvopastoral systems (SPS) can enhance the stability and resilience of farmers' livelihoods, boost milk production, facilitate animal growth, and improve animal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Akande 2020)

Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Adegbeye MJ, Reddy PRK, Obaisi AI, Elghandour MMY, Oyebamiji KJ, Salem AZM, Morakinyo-Fasipe OT, Cipriano-Salazar M, Camacho-Díaz LM (2020) Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations – an overview. J Clean Prod 242:18319

    Article  Google Scholar 

  • Ahmed J, Almeida E, Aminetzah D, Denis N, Henderson K, Katz J, Kitchel H, Mannion P (2020) Agriculture and climate change: reducing emissions through improved farming practices. Agric Clim Chang 1:9–10

    Google Scholar 

  • Akande S (2020) Map of Forest Researves in Nigeria. Modelling future Impacts of Forest Fires on Climate Change and Air Quality (Case of Africa and Australia) DOI:https://doi.org/10.13140/RG.2.2.10692.58249

  • Akewusola OG, Babayemi OJ, Adebayo AA (2017) Grazing behaviour and forage selection pattern of heifers in the range. Nig J Animal Product 44(2):194–201

    Google Scholar 

  • Almeida JCF, Joset WCL, Noronha RPP, Barbosa AVC, Lourenço Júnior JB, Silva JAR (2019) Behaviour of buffalo heifers reared in shaded and unshaded pastures during the dry season on Marajó Island, Pará. Brazil. Acta Sci Anim Sci 41:e43088

    Article  Google Scholar 

  • Alonso J, Torres O, Achang G, Blanco P, Sanchez B, Pinto R, Villanueva C (2020) Diversidad y riqueza de aves en diferentes alternativas pastoriles para la producción de leche en el trópico. Livest Res Rural Dev 32:173

    Google Scholar 

  • Alvarez F, Casanoves F, Suárez JC, Pezo D (2021) The effect of different levels of tree cover on milk production in dual-purpose livestock systems in the humid tropics of the Colombian Amazon region. Agrofor Syst 95:93–102

    Article  Google Scholar 

  • Amonum JI, Babalola FD, Agera SIN (2009) Agroforestry systems in Nigeria: review of concepts and practices. J Res Forest Wildlife Environ 1:18–30

    Google Scholar 

  • Awazi NP, Avana-Tientcheu ML (2020) Agroforestry as a sustainable means to farmer–grazier conflict mitigation in Cameroon. Agrofor Syst 94:2147–2165

    Article  Google Scholar 

  • Balehegn M, Kebreab E, Tolera A, Hunt S, Erickson P, Crane TA, Adesogan AT (2021) Livestock sustainability research in Africa with a focus on the environment. Anim Front 11:47–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballesteros-Correa J, Perez-Torres J (2022) Silvopastoral system and conventional management of extensive livestock and the diversity of bats in fragments of tropical dry forest in Cordoba Colombia. Agrofor Syst 96:589–601

    Article  Google Scholar 

  • Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M (2020) Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 14(S1):S2–S16. https://doi.org/10.1017/S1751731119003100

    Article  CAS  PubMed  Google Scholar 

  • Becerril-Pérez CM, Sánchez-Gómez A, Morales-Trejo F, Vargas-Romero JM, Platas-Rosado DE, Rosendo-Ponce A (2021) Pre-weaning growth of Criollo Tropical Milking calves fed with milk from silvopastoral systems. Agroprod 14:87–92

    Article  Google Scholar 

  • Bello H, Gonçalves JA, Teixeira GS, Santos JF, Polycarpo GV, Almeida FA, Amarante A, Soutello R (2020) Parasitism in Angus x Nellore heifers in a silvopastoral system. Trop Anim Health Prod 52:1733–1738

    Article  PubMed  Google Scholar 

  • Bottini-Luzardo MB, Aguilar-Pérez CF, Centurión-Castro FG, Solorio-Sánchez FJ, Ku-Vera F (2016) Milk yield and blood urea nitrogen in crossbred cows grazing Leucaena leucocephala in a silvopastoral system in the Mexican tropics. Trop Grasslands-Forrajes Trop 4:159–167

    Article  Google Scholar 

  • Cajas-Giron YS, Sinclair FL (2001) Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst 53:215–225

    Article  Google Scholar 

  • Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM, Maassen G, Schleuning M, Kalko E, Bohning-Gaese K, Steffan-Dewenter I (2014) Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc R Soc B 281:20133148

    Article  PubMed  PubMed Central  Google Scholar 

  • Corral-Flores G, Rodríguez-Echavarría ME, Solorio-Sánchez B, Alarcón-Rojo AD, Grado-Ahuir JA, Rodríguez-Muela C, Cortés-Palacios L, Segovia-Beltrán VE (2012) Solorio-Sánchez FJ (2012) Calidad de la carne de bovinos engordados en un sistema silvopastoril intensivo en dos épocas del año IV Congreso Internacional Sobre Sistemas Silvopastoriles Intensivos en la Ganadería con Ciencia [Morelia. México 21–23:113–122

    Google Scholar 

  • CSIRO (2020) Agriculture and food: Dairy production in Nigeria. www.csiro.au. w https://research.csiro.au/livegaps/

  • Cubbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas A, Fassola H, Colcombet L, Rossner B, Frey G, Stevenson H, Hamilton J, Hubbard W (2011) Comparing silvopastoral systems and prospects in six regions of the world. In: Ashton, S. F., S.W. Workman, W.G. Hubbard and D.J. Moorhead, eds. Agroforestry: A Profitable Land Use. Proceedings, 12th North American Agroforestry Conference, Athens, GA, June 4–9, 2011.

  • Cuevas-Reyes V, Jiménez JR, Bravo MB, Meza AL, Sánchez-Toledano BI, Gallegos TM, Nieto CR (2020) Financial and economic evaluation of an intensive low irrigation silvopastoral system Rev Mex Cienc. Forest 11:62

    Google Scholar 

  • de Carvalho P, Domiciano LF, Mombach MA, Nascimento H, Cabral L, Sollenberger L, Pereira DH, Pedreira BC (2019) Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop–livestock–forestry systems. Grass Forage Sci 74:650–660

    Article  Google Scholar 

  • de Souza Congio GF, Bannink A, Mayorga Mogollón OL, Jaurena G, Gonda H, Gere JI, Cerón-Cucchi ME, Ortiz-Chura A, Tieri MP, Hernández O, Ricci P (2021) Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. J Clean Prod 312:127693

    Article  Google Scholar 

  • Domiciano LF, Pedreira BC, da Silva NMF, Mombach MA, Chizzotti FHM, Batista ED, Carvalho P, Cabral LS, Pereira DH, do Nascimento HLB, (2020) Agroforestry systems: an alternative to intensify forage-based livestock in the Brazilian Amazon. Agrofor Syst 94:1839–1849

    Article  Google Scholar 

  • Duffy C, Apdini T, Styles D, Gibbons J, Peguero F, Arndt C, Mazzetto A, Vega A, Chavarro-Lobo J, Brook R, Chadwick D (2021) Marginal abatement cost curves for Latin American dairy production: a Costa Rica case study. J Clean Prod 311:127556

    Article  Google Scholar 

  • Escalante EE, Messa HF (2022) The Polar Foundation Silvopastoril Program at DANAC Foundation, Yaracuy, Venezuela. Environ Anal Eco Stud 10(2):000731. https://doi.org/10.31031/EAES.2022.10.000731

    Article  Google Scholar 

  • FAOSTAT (2018) Food and Agricultural Organization Statistics. www.fao.org/faost

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129. https://doi.org/10.1016/jagee(2017)11032

    Article  Google Scholar 

  • Frank S, Havlík P, Stehfest E, van Meijl H, Witzke P, Perez-Domínguez I, van Dijk M, Doelman JC, Fellmann T, Koopman JFL, Tabeau A, Valin H (2019) Agricultural non-CO2 emission reduction potential in the context of the 15 °C target. Nat Clim Chang 9:66–72

    Article  CAS  Google Scholar 

  • Galindo-Blanco JL, Rodríguez-García I, González-Ibarra N, López G, Herrera-Villafranca M (2018) Silvopastoral system with Tithonia diversifolia (Hemsl) A Gray: effect on the rumen microbial population of cows. Past Forraj 41:254–260

    Google Scholar 

  • Gargaglione V, Peri P, Rubio G (2014) Tree–grass interactions for N in Nothofagus antarctica silvopastoral systems: evidence of facilitation from trees to underneath grasses. Agrofor Syst 88:779–790

    Article  Google Scholar 

  • Giraldo C, Escobar F, Chara J, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian. Insect Conserv Diver 4:115–122

    Article  Google Scholar 

  • González-Quintero R, Bolívar-Vergara DM, Chirinda N, Arango J, Pantevez H, Barahona-Rosales R, Sánchez-Pinzón MS (2021) Environmental impact of primary beef production chain in Colombia: carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci Total Environ 773:145573

    Article  PubMed  Google Scholar 

  • Guerreiro M, Nicodemo M, Porfırio S (2015) Vulnerability of ten eucalyptus varieties to predation by cattle in a silvopastoral system. Agrofor Syst 89:743–749

    Article  Google Scholar 

  • Ikhuoso OA, Adegbeye MJ, Elghandour MMY, Mellado M, Al-Dobaib SN, Salem AZM (2020) Climate change and Agriculture: The competition for limited resources amidst crop-farmers livestock herding conflict in Nigeria - a review. J Clean Prod 272:123104

    Article  Google Scholar 

  • Jack AA, Adewumi MK, Adegbeye MJ, Ekanem DE, Salem AZM, Faniyi TO (2020) Growth-promoting effect of water-washed neem (Azadirachta indica A. Juss) fruit inclusion in West African dwarf rams. Trop Anim Health Prod. https://doi.org/10.1007/s11250-020-02380-w

    Article  PubMed  Google Scholar 

  • Jack AA, Oghenesuvwe O, Adewumi MK, Omojola AB, Adegbeye MJ, Faniyi TO, Salem AZM, Elghandour M, Cuevas-Barragan CE, Pliego-Barbabosa A, Ekanem DE (2022) Conversion of Neem Fruit biomass for rumen manipulation, meat fatty acid profile improvement of rams. Biom Conv Bioref. https://doi.org/10.1007/s13399-022-02629-4

    Article  Google Scholar 

  • Jose S, Walter D, Mohan Kumar B (2019) Ecological considerations in sustainable silvopasture design and management. Agrofor Syst 93:317–331

    Article  Google Scholar 

  • Landholm DM, Pradhan P, Wegmann P, Sánchez MAR, Salazar JCS, Kropp JP (2019) Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá. Environ Res Lett 14:114007

    Article  CAS  Google Scholar 

  • Leal DP (2021) Green-Beef: Meat production with zero carbon footprint University of Portsmouth. Thesis for: BEng Mechanical and Manufacturing Engineering, p 1–27 DOI: https://doi.org/10.13140/RG.2.2.12558.89927

  • Lee S, Bonatti M, Löhr K, Palacios V, Lana M, Sieber S (2020) Adoption potentials and barriers of silvopastoral system in Colombia: case of Cundinamarca region. Cog Environ Sci 6:1823632. https://doi.org/10.1080/23311843(2020)1823632

    Article  Google Scholar 

  • Lima MA, Paciullo DSC, Morenz MJF, Gomide CAM, Rodrigues RAR, Chizzotti FHM (2018) Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long-term silvopastoral system. Grass Forage Sci 74:160–170

    Article  Google Scholar 

  • Lopes LB, Pedreira BC, Eckstein C, Santos L, Peruffo RG (2020) Gastrointestinal nematode egg counts, and performance of beef cattle raised on open pastures and silvopastoral systems in Brazil. Agrofor Syst 94:1693–1700

    Article  Google Scholar 

  • Lopez-Díaz ML, Rigueiro-Rodríguez A, Mosquera-Losada MR (2009) Influence of pasture botanical composition and fertilization treatments on tree growth. For Ecol Manag 257:1363–1372

    Article  Google Scholar 

  • Lucero A, Sotomayor A, Muñoz F, Cancino J, Dube F (2014) The Spinal: A sustainable productive alternative for Interior Dryland Development of Chilean Central Mediterranean Area? World Congress on Agroforestry Delhi 2014 Conference 1–20

  • Mahecha L, Giraldo D, Arroyave JF, Restrepo LF (2004) Evaluación del silvopastoreo como alternativa para el manejo del destete precoz en terneros cebu. Livest Res Rural Dev 16:30

    Google Scholar 

  • Mahecha L, Murgueitio M, Angulo J, Olivera M, Zapata A, Cuartas C, Naranjo J, Murgueitio E (2011) Desempeño animal y características de la canal de dos grupos raciales de bovinos doble propósito pastoreando en sistemas silvopastoriles intensivos. Rev Colomb De Cienc Pecu 24:470

    Google Scholar 

  • Marques Filho WC, Barbosa GF, Cardoso DL, Ferreira AD, Pedrinho DR, Bono JAM, de Souza CC, Frainer DM (2017) Productive Sustainability in a Silvopastoral System. Biosci J Uberlândia 33:10–18

    Article  Google Scholar 

  • McAdam JH, Sibbald AR, Teklehaimanot R, Eason WR (2007) Developing silvopastoral systems and their effects on diversity of fauna. Agrofor Syst 70:81–89. https://doi.org/10.1007/s10457-007-9047-8

    Article  Google Scholar 

  • Messa HF (2009) Greenhouse gas balance in a dual purpose livestock production model with silvopastoral alternatives in Yaracuy, Venezuela. Tesis MSc. CATIE, Turrialba, Costa Rica, USA, p 225.

  • Mohammed MA, Aguilar-Pérez C, Ayala-Burgos A, Bottini-Luzardo M, Solorio-Sánchez F, Ku-Vera J (2016) Evaluation of milk composition and fresh soft cheese from an intensive silvopastoral system in the tropics. Dairy Sci Tech 96:159–172

    Article  Google Scholar 

  • Mojica Rodríguez J, Rojas MR, Ortiz D, Ortiz J, Rojas JA, Hernández S (2019) Cattle productivity and carbon stock in silvopastoral systems with Leucaena in the Colombian Dry Caribbean. Corporación Colombiana de investigación agropecuaria AGROSAVIA Poster pg 1–2. https://repository.agrosavia.co/handle/20.500.12324/35543

  • Molina IC, Angarita EA, Mayorga OL, Char’a J, Barahona-Rosales R (2016) Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29

    Article  Google Scholar 

  • Moneeb AS, Aguilar-Pérez CF, Ayala-Burgos AJ, Solorio-Sanchez FJ, Ku-Vera JC (2019) Fatty acids profile of fresh cheese produced in an intensive silvopastoral system in the tropics. Trop Subtrop Agroecosyst 22:631–637

    Article  CAS  Google Scholar 

  • Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (2015) Sistemas Agroforestales Funciones productivas socioeconomicas y ambientales. P 1–486.

  • Montano-Bermudez M, Nielsen MK, Deutscher GH (1990) Energy requirements of maintenance of crossbred beef cattle with different genetic potential for milk. J Anim Sci 62:2279–2288

    Article  Google Scholar 

  • Moreno-Calles A, Houses A, Blancas J, Torres I, Masera O, Caballero J, Garcia-Barrios P-NE, Rnagel-Landa S (2010) Agroforestry systems and biodiversity conservation in Arid Zones: the case of the Tehuacan Valley, Central Mexico. Agrofor Syst 80:315–331

    Article  Google Scholar 

  • Moutik S, Lakram N, Bendaou M, Maadoudi H, Kabbour M, Douaik A, Zouahri A, El Housni A, Es-Safi E (2019) The effect of including argane by-products (meal and pulp) in dairy ewe diet on milk quality and production, and lamb growth performance. Trop Anim Health Prod 51:2437–2445

    Article  PubMed  Google Scholar 

  • Murgueitio E, Barahona R, Chará JD, Flores MX, Mauricio RM, Molina JJ (2015) The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry. Cuban J Agric Sci 49:541–554

    Google Scholar 

  • Naranjo JF, Cuartas CA, Murgueitio E, Chará J, Barahona R (2012) Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livest Res Rural Dev 24:150

    Google Scholar 

  • NASS (2011) National Bureau of Statistics/Federal Ministry of Agriculture and Rural Development Collaborative Survey on National Agriculture Sample Survey (NASS), 2010/2011.

  • Nicodemo MLF, Porfírio-da-Silva V (2019) Bark stripping by cattle in silvopastoral systems. Agrofor Syst 93:305–315

    Article  Google Scholar 

  • Nwigwe C, Okoruwa V, Adenegan K, Olajide A (2016) Technical efficiency of beef cattle production technologies in Nigeria: a stochastic frontier analysis. Afr J Agric Res 11(51):5152–5161

    Article  Google Scholar 

  • Okafor JC, Fernandes ECM (1987) Compound farms of Southeastern Nigeria: a predominant agroforestry Homegarden system with crops and small livestock. Agrofor Syst 5(2):153–168. https://doi.org/10.1007/BF00047519

    Article  Google Scholar 

  • Okigbo BN (1983) Plants and agroforestry in land use systems of West Africa. In: Huxley, P. A. (eds). Plant Research and Agroforestry. Nairobi, Kenya, ICRAF, pp. 25–42.

  • Olafadehan OA, Umunna MO, Arowona A (2014) Small ruminant production and management systems in urban area of southern Guinea Savanna of Nigeria. Asian J Agric Food Sci 2(2):107–114

    Google Scholar 

  • Olajuyigbe S (2018) Green Gold of Africa: Nigeria´s forest, a depleted but resilient renewable resource. Irish Forest 75:92–112

    Google Scholar 

  • Olea L, Miguel-Ayanz A (2006) The Spanish dehesa: A traditional Mediterranean silvopastoral system linking production and nature conservation Sustainable grass productivity: proceedings of the 21st general meeting of the European grassland federation, Badajoz, Spain, 3-6 April 2006:3-13

  • Ormazabal CS (1991) Silvopastoral systems in arid and semi-arid zones of northen Chile. Agrofor Syst 14:207–217

    Article  Google Scholar 

  • Ortega C, Manuel GR, Ku Vera JC, Ayala AR (2015) Comparación del contenido de ácidos grasos en queso artesanal Tepeque producido en un sistema silvopastoril y un sistema tradicional de Michoacán, México, (MSc Thesis, UAEM, Mexico) http://hdl.handle.net/20.500.11799/58750

  • Oyelami A, Osikabor B (2022) Adoption of silvopastoral agroforestry system for a sustainable cattle production in Nigeria. J Appl Sci Environ Manage 26(8):1397–1402

    Google Scholar 

  • Pagiola S (2011) Using PES to implement REDD Latin America and Caribbean Sustainable Development Department World Bank Washington DC, USA PG 1–22

  • Pagiola S (2018) Payments for Environmental Services State-of-the art review and potential for NCA. Global Platform, Environment and Natural Resources Global Practice World Bank Wealth Accounting and the Valuation of Ecosystem Services (WAVES) Eighth Annual Partnership Meeting 28–29 November 2018, Paris, France. World Bank group 1–28

  • Paiva I, Auad A, Veríssimo B, Silveira L (2020) Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil. Sci Rep 10:12112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul BK, Koge J, Maass BL, Notenbaert A, Peters M, Groot J, Tittonell P (2020) Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa: a meta-analysis. Agro Sust Dev 40:22

    Article  Google Scholar 

  • Paul BK, Butterbach-Bahl K, Notenbaert A, Nderi AN, Ericksen P (2021) Sustainable livestock development in low- and middle-income countries: shedding light on evidence-based solutions. Environ Res Lett 16:011001

    Article  Google Scholar 

  • Pezo D, Ríos N, Ibrahim M, Gomez M (2019) Silvopastoral Systems for Intensifying Cattle Production and Enhancing Forest Cover: The Case of Costa Rica Leveraging Agricultural Value Chains to Enhance Tropical Tree Cover and Ney Ríos CATIE (Centro Agronomico Tropical de Investigacion ´ y Ensenanza) ˜ PROFOR 1–78 https://www.profor.info/sites/profor.info/files/Silvopastoral%20systems_Case%20Study_LEAVES_2018.pdf

  • Plieninger T, Huntsinger L (2018) Complex rangeland systems: integrated social-ecological approaches to silvopastoralism. Rangeland Ecol Manage 71:519–525

    Article  Google Scholar 

  • Rangel J, Muiz EN, Souza SF, Santos R, Piovezan U (2019) Gliricidia sepium: a promising legume for the Brazilian semi-arid zone. Legum Persp 17:36–38

    Google Scholar 

  • Resende L, Müller M, Kohmann M, Pinto G, Junior L, Zen S, Rego L (2020) Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agrofor Syst 94:893–903

    Article  Google Scholar 

  • Reyes E, Bellagamba A, Molina JJ, Izquierdo L, Deblitz C, Chara J, Mitchel L, Romanowicz B, Gomez M, Murgueitio E (2017) Measuring sustainability of cattle ranches: silvopastoral systems Agri benchmarks beef and sheep network CIPAV/FEDEGAN/World Animal Protection/Good Food Futures Ltd Briefing Paper 17/2 Thunen Institute of Farm Economics, Braunschweig, Germany 29 P

  • Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest Res Rural Dev 27:189

    Google Scholar 

  • Rojas P, Gonzalez M, Susana Benedetti S, Yates P, Sotomayor A, Dube F (2016) Silvopastoral systems in Arid and semiarid zones of Chile. In: Peri P, Dube F Varella A (eds) Silovopastoral system in southern south America. Advances in Agroforestry 11:169–181

  • Root-Bernstein M, Guerrero-Gatica M, Pina L, Bonacic C, Jens-Christian S, Jaksic F (2017) Rewilding-inspired transhumance for the restoration of semi-arid silvopastoral system in Chile. Regional Envirn Change 17:1381–1396

    Article  Google Scholar 

  • Rose S, Khatri-Chhetri A, Stier M, Wilkes A, Shelton S, Arndt C, Wollenberg E (2022) Livestock management ambition in the new and updated nationally determined contributions: (2020–2021): Analysis of agricultural sub-sectors in national climate change strategies CCAFS Info Note Wageningen, The Netherlands: CGIAR Research Program on Climate Change, Agriculture & Food Security (CCAFS)

  • Rosenzweig C, Mbow C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga ET, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN, Yinlong X, Contreras EM, Portugal-Pereira J (2020) Climate change responses benefit from a global food system approach. Nat Food 1(2):94–97. https://doi.org/10.1038/s43016-020-0031-z

    Article  PubMed  Google Scholar 

  • Sales-Baptista E, Ferraz-de-Oliveira M (2021) Grazing in silvopastoral systems: multiple solutions for diversified benefits. Agrofor Syst 95:1–6

    Article  Google Scholar 

  • Sarabia-Salgado L, Solorio-Sánchez F, Ramírez-Avilés L, Alves B, Ku-Vera J, Aguilar-Pérez C, Urquiaga S, Boddey RM (2020) Increase in milk yield from cows through improvement of forage production using the N2-fixing legume Leucaena leucocephala in a Silvopastoral System. Animals 10:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Scoones I (ed.), (2023) Pastoralism, Uncertainty and Development, Rugby, UK: Practical Action Publishing. https://doi.org/10.3362/9781788532457>

  • Sekercioglu C., Wenny D.G., Whelan C.J. (eds) (2016) Why Birds Matter: Avian Ecological Function and Ecosystem Services. University of Chicago Press

  • Sossa-Sánchez CP, Barragán-Hernández W, Lopera-Marín JJ, Rodríguez-Colamarco DA, Bothía-Manosalva JL, Galindo-Ospina A, Murgueitio E (2019) Sensorial valuation in beef quality from livestock sustainable systems in flooded savanna of Arauca. Colombia Livest Res Rural Dev 31:10

    Google Scholar 

  • Tela M, Cresswell W, Chapman H (2021) Pest-removal services provided by birds on subsistence farms in south-eastern Nigeria. PLoS ONE 16(8):e0255638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varsha KM, Raj AK, Kurien EK, Bastin B, Kunhamu TK, Pradeep KP (2019) High density silvopasture systems for quality forage production and carbon sequestration in humid tropics of Southern India. Agrofor Syst 93:185–198

    Article  Google Scholar 

  • Villanueva C, Moscoso C, Detlefsen G, Solís J, López J (2023) Contribución de la cobertura arbórea a la compensación de las emisiones de gases de efecto invernadero de fincas productoras de leche en el sur oriente de Guatemala. Latin Am Arch Animal Prod 31(1):93–102

    Google Scholar 

  • Yadav A, Gendley MK, Sahu J, Patel PK, Chandraker K, Dubey A (2019) Silvopastoral system: a prototype of livestock agroforestry. Pharma Innov J 8:76–82

    CAS  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260

    Article  Google Scholar 

  • Zouhair FZ, Benali A, Kabbour MR, El Kabous K, El Maadoudi E, Bouksaim M, Essamri A (2018) Typical characterization of argane pulp of various Moroccan areas: a new biomass for the second-generation bioethanol production. J Saudi Soc Agric Sci 19:1–6

    Google Scholar 

Download references

Acknowledgements

“This research was supported by the Mitigate+: Research for Low Emissions Food Systems and the Global Research Alliance on Agricultural Greenhouse Gases (GRA) through their CLIFF-GRADS programme. Funding for Mitigate+ comes from CGIAR Trust Fund. Thank you to Colombian Corporation for Agricultural Research (AGROSAVIA) for hosting the recipient (First Author) and to the Government of New Zealand for providing financial support”. We also want to thank the anonymous reviewers for their input, suggestions and correction which was invaluable to this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MJA, SDO, WSW, AMSA conceptualized the idea. MJA and WSW performed the literature search. MJA wrote the initial draft of the article. SDO, WSW, AMSA and OLMM critically revised the manuscript. WSW adapted Figure 1. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Moyosore Joseph Adegbeye.

Ethics declarations

Conflicts of interest

Authors declare that they have no known competing interests that could have appeared to influence the work reported in this report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegbeye, M.J., Ospina, S.D., Waliszewski, W.S. et al. Potential application of Latin American silvopastoral systems experiences for improving ruminant farming in Nigeria: a review. Agroforest Syst (2024). https://doi.org/10.1007/s10457-023-00943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10457-023-00943-y

Keywords

Navigation