Skip to main content
Log in

Design and Development of 2D Woven Auxetic Fabric and Composites Based on Wave Form Geometry

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Auxetic materials differ from typical materials in that they expand in the transverse direction when stretched longitudinally, giving them special features. It is possible to weave auxetic fabrics using both auxetic and non-auxetic threads. This study exhibits the semi-empirical modeling of the auxetic woven fabric followed by computational modeling for the prediction of Poisson's ratio. Further, woven fabrics have been developed to test the geometry's potential for producing an auxetic fabric, which can be used for maternity and children's clothing, wound dressing, and protective clothing, providing better comfort and longevity of application. Poisson’s ratio of the developed auxetic samples is measured and compared with experimental results. The effect of thread density and float length on the auxeticity of the fabric based on waveform geometry is also investigated in this study. It was observed that the increase in thread density increases the auxeticity of the fabric, whereas the increase in float length decreases the auxeticity. Auxetic composites were successfully developed using silicon rubber gel as the matrix system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data related to this research currently cannot be shared as this data is essential for future research work.

References

  1. Evans, K.E., Alderson, K.L.: Auxetic materials: the positive side of being negative. Engineering Science and Education Journal 9(4), 148–154 (2000). https://doi.org/10.1049/esej:20000402

    Article  Google Scholar 

  2. Shukla, S., Behera, B.K.: Auxetic fibrous structures and their composites: A review. Compos. Struct.Struct. 290, 115530 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115530

    Article  Google Scholar 

  3. Shukla, S., Behera, B.K.: Auxetic fibrous materials and structures in medical engineering–a review. J. Text. Inst. (2022). https://doi.org/10.1080/00405000.2022.2116549

    Article  Google Scholar 

  4. Li, Y., Zhang, X., Ying, B.A.: On textile biomedical engineering. Sci. China. Technol. Sci. 62(6), 945–957 (2019). https://doi.org/10.1007/s11431-018-9504-5

    Article  Google Scholar 

  5. Bhullar, S.K., et al.: Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater. Sci. Eng. C 81(August), 334–340 (2017). https://doi.org/10.1016/j.msec.2017.08.022

    Article  CAS  Google Scholar 

  6. Amin, F., Ali, M.N., Ansari, U., Mir, M., Minhas, M.A., Shahid, W.: Auxetic coronary stent endoprosthesis: Fabrication and structural analysis. J Appl Biomater Funct Mater 13(2), E127–E135 (2015). https://doi.org/10.5301/jabfm.5000213

    Article  CAS  Google Scholar 

  7. Jiang, N., Hu, H.: Auxetic Yarn Made with Circular Braiding Technology. Phys. Status. Solidi. B. Basic. Res. 256(1), 1–12 (2019). https://doi.org/10.1002/pssb.201800168

    Article  CAS  Google Scholar 

  8. Gao, Y., Liu, S., Wu, M., Chen, X., Studd, R.: Manufacture and Evaluation of Auxetic Yarns and Woven Fabrics. Physica. Status. Solidi. (b). 257(10), 1900112 (2020). https://doi.org/10.1002/PSSB.201900112

    Article  CAS  Google Scholar 

  9. Nazir, M.U., Shaker, K., Hussain, R., Nawab, Y.: Performance of novel auxetic woven fabrics produced using Helical Auxetic Yarn. Mater. Res. Express. 6(8),(2019)

  10. Ullah, T., Hussain, M., Ali, M., Umair, M.: Auxetic behavior of 3D woven warp, weft, and bidirectional interlock structures (2023). https://doi.org/10.1080/15440478.2023.2168823

  11. Wang, Z., Hu, H.: 3D auxetic warpknitted spacer fabrics 288(2), 281–288 (2014). https://doi.org/10.1002/pssb.201384239

    Article  CAS  Google Scholar 

  12. Alderson, K., Alderson, A., Anand, S., Simkins, V., Nazare, S., Ravirala, N.: Auxetic warp knit textile structures. Phys. Status. Solidi. B. Basic. Res. 249(7), 1322–1329 (2012). https://doi.org/10.1002/pssb.201084216

    Article  CAS  Google Scholar 

  13. Liu, Y., Hu, H., Lam, J.K.C.: Negative Poisson ’ s Ratio Weft-knitted Fabrics 80(9), 856–863 (2010). https://doi.org/10.1177/0040517509349788

    Article  CAS  Google Scholar 

  14. Shuaiquan, Z., Yuping, C., Yadie, Y., Minglonghai, Z., Kamrul, H., Hong, H.: Auxetic behavior of warp knitted fabric under repeating tension. Text. Res. J. 91(15–16), 1732–1741 (2021). https://doi.org/10.1177/0040517521989277

  15. Zhao, S., Hu, H., Kamrul, H., Chang, Y., Zhang, M.: Development of auxetic warp knitted fabrics based on reentrant geometry. Text. Res. J. 90(3–4), 344–356 (2020). https://doi.org/10.1177/0040517519866931

    Article  CAS  Google Scholar 

  16. Boakye, A., Chang, Y., Rafiu, K.R., Ma, P.: Design and manufacture of knitted tubular fabric with auxetic effect. J. Text. Inst. 5000, 0 (2018). https://doi.org/10.1080/00405000.2017.1361582

    Article  CAS  Google Scholar 

  17. Zulifqar, A., Hu, H.: Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Text. Res. J. 89, 4476–4490 (2019). https://doi.org/10.1177/0040517519836936

    Article  CAS  Google Scholar 

  18. Zulifqar, A., Hu, H.: Development of Bi-Stretch Auxetic Woven Fabrics Based on Re-Entrant Hexagonal Geometry. Physica. Status. Solidi. (B). 256(1800172), 1–8 (2019). https://doi.org/10.1002/pssb.201800172

    Article  CAS  Google Scholar 

  19. Chen, Y., Zulifqar, A., Hu, H.: Auxeticity from the Folded Geometry: A Numerical Study, physica status solidi (b) 257(3), 1900361 (2020). https://doi.org/10.1002/PSSB.201900361

    Article  CAS  Google Scholar 

  20. Zulifqar, A., Hua, T., Hu, H.: Single- and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries. Physica. Status. solidi. (b). 257(10), 1900156 (2020). https://doi.org/10.1002/PSSB.201900156

  21. Zulifqar, A., Hua, T., Hu, H.: Development of uni-stretch woven fabrics with zero and negative Poisson ’ s ratio. Text. Res. J. 88(18), 2076–2092 (2018). https://doi.org/10.1177/0040517517715095

    Article  CAS  Google Scholar 

  22. Wang, Z., Zulifqar, A., Hu, H.: Auxetic composites in aerospace engineering. Advanced Composite Materials for Aerospace Engineering, no. September 2017 1(2), 213–240 (2016). https://doi.org/10.1016/b978-0-08-100037-3.00007-9

    Article  Google Scholar 

  23. Cao, H., Zulifqar, A., Hua, T., Hu, H.: Bi-stretch auxetic woven fabrics based on foldable geometry. Text. Res. J. 89(13), 2694–2712 (2019). https://doi.org/10.1177/0040517518798646

    Article  CAS  Google Scholar 

  24. Kamrul, H., Zulifqar, A., Yang, Y., Zhao, S., Zhang, M., Hu, H.: Geometrical analysis of auxetic woven fabrics based on foldable geometry. Text. Res. J. 92(3–4), 317–329 (2022). https://doi.org/10.1177/00405175211008663/ASSET/IMAGES/LARGE/10.1177_00405175211008663-FIG2.JPEG

    Article  CAS  Google Scholar 

  25. Kamrul, H., Zulifqar, A., Yang, Y., Zhao, S., Zhang, M., Hu, H.: Geometrical analysis of auxetic woven fabrics based on foldable geometry (2021). https://doi.org/10.1177/00405175211008663

    Article  Google Scholar 

  26. Shukla, S., Kumar Behera, B., Kumar Mishra, R., Tichý, M., Kolář, V., Müller, M.: Modelling of auxetic woven structures for composite reinforcement. Text. 2022 2(1), 1–15 (2021). https://doi.org/10.3390/TEXTILES2010001

    Article  Google Scholar 

  27. Shukla, S., Jain, S., Behera, B.K.: Design and development of 2d woven auxetic fabric based on double arrow geometry using semi-empirical model (2022). https://doi.org/10.37421/2169-0022.2022.11.22

    Article  Google Scholar 

Download references

Funding

The authors received no funding.

Author information

Authors and Affiliations

Authors

Contributions

Shivangi Shukla: manuscript writing, editing, experimental plan, testing, experimental work, Jaya Sharma: testing, editing, Shreyansh Jain: experimental work, B.K. Behera: supervision, manuscript review.

Corresponding author

Correspondence to Shivangi Shukla.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Sharma, J., Jain, S. et al. Design and Development of 2D Woven Auxetic Fabric and Composites Based on Wave Form Geometry. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-023-10197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10443-023-10197-7

Keywords

Navigation