Skip to main content
Log in

Band Gap Narrowing of Orthorhombic Sodium Tantalate by Iron Doping and Photocatalytic Hydrogen Evolution by Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work we have narrowed the band gap of orthorhombic sodium tantalate by doping the perovskite structure with 5 and 10% of iron. The hydrothermal method was used in the preparation of the samples. Moreover, the evolution of hydrogen by photocatalytic water splitting is reported for first time for orthorhombic NaTaO3 mono-doped with Fe. The band gap was reduced from 4.08 to 3.24 eV for sodium tantalate doped with 5% of Fe, and up to 2.05 eV for the perovskite doped with 10% of Fe. The highest photocatalytic activity was obtained with the semiconductor that had 5% of Fe. Which was attributable to its smaller particle size, larger specific surface area and lower recombination of electron–hole pairs in contrast with the sample that had 10% of Fe. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, nitrogen physisorption, ultraviolet–visible diffuse reflectance and photoluminescence spectroscopies were used to analyze the perovskite materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrog Energy 44:2. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  2. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:598. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  3. El-Shafie M, Kambara S, Hayakawa Y (2019) Hydrogen production technologies overview. J Power Energy Eng 07:107–154. https://doi.org/10.4236/jpee.2019.71007

    Article  Google Scholar 

  4. Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. In: Conference papers in energy, 2013, pp 1–9. https://doi.org/10.1155/2013/690627

  5. Chen Z, Chen P, Xing P, Hu X, Lin H, Wu Y, Zhao L, He Y (2018) Novel carbon modified KTa0.75Nb0.25O3 nanocubes with excellent efficiency in photocatalytic H2 evolution. Fuel 233:486–487. https://doi.org/10.1016/j.fuel.2018.06.090

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  7. Do HH, Nguyen DLT, Nguyen XC, Le TH, Nguyen TP, Trinh QT, Ahn SH, Vo DVN, Kim SY, Van Le Q (2020) Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arab J Chem 13:3653–3654. https://doi.org/10.1016/j.arabjc.2019.12.012

    Article  CAS  Google Scholar 

  8. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 246:856. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  9. Li Y, Peng YK, Hu L, Zheng J, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong KY, Taylor RA, Tsang SCE (2019) Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun 10:2. https://doi.org/10.1038/s41467-019-12385-1

    Article  CAS  Google Scholar 

  10. Huang Y, Liu J, Deng Y, Qian Y, Jia X, Ma M, Yang C, Liu K, Wang Z, Qu S, Wang Z (2020) The application of perovskite materials in solar water splitting. J Semicond 41:3. https://doi.org/10.1088/1674-4926/41/1/011701

    Article  CAS  Google Scholar 

  11. Eidsvåg H, Bentouba S, Vajeeston P, Yohi S, Velauthapillai D (2021) TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules 26:4. https://doi.org/10.3390/molecules26061687

    Article  CAS  Google Scholar 

  12. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:255. https://doi.org/10.1039/b800489g

    Article  CAS  Google Scholar 

  13. Maheu C, Cardenas L, Puzenat E, Afanasiev P, Geantet C (2018) UPS and UV spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys Chem Chem Phys 20:10. https://doi.org/10.1039/c8cp04614j

    Article  CAS  Google Scholar 

  14. Mishra V, Warshi MK, Sati A, Kumar A, Mishra V, Kumar R, Sagdeo PR (2019) Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Appl Sci 1:4. https://doi.org/10.1007/s42452-019-0253-6

    Article  CAS  Google Scholar 

  15. Natarajan TS, Mozhiarasi V, Tayade RJ (2021) Nitrogen doped titanium dioxide (N-TiO2): synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications. Photochemistry 1:371–410. https://doi.org/10.3390/photochem1030024

    Article  Google Scholar 

  16. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. N J Chem 40:3000–3009. https://doi.org/10.1039/c5nj03478g

    Article  CAS  Google Scholar 

  17. Yeh MY, Li JH, Chang SH, Lee SY, Huang H (2019) Facile hydrothermal synthesis of NaTaO3 with high photocatalytic activity. Mod Phys Lett B 33:1. https://doi.org/10.1142/s0217984919400463

    Article  Google Scholar 

  18. Teh YW, Chee MKT, Kong XY, Yong ST, Chai SP (2020) An insight into perovskite-based photocatalysts for artificial photosynthesis. Sustain Energy Fuels 4:973–984. https://doi.org/10.1039/c9se00526a

    Article  CAS  Google Scholar 

  19. Shi R, Waterhouse GIN, Zhang T (2017) Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol RRL 1:4. https://doi.org/10.1002/solr.201700126

    Article  CAS  Google Scholar 

  20. Zhang P, Zhang J, Gong J (2014) Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 43:4401–4403. https://doi.org/10.1039/c3cs60438a

    Article  CAS  Google Scholar 

  21. Li ZH, Chen G, Liu JW (2007) Electron structure and optical absorption properties of cubic and orthorhombic NaTaO3 by density functional theory. Solid State Commun 143:295–299. https://doi.org/10.1016/j.ssc.2007.05.041

    Article  CAS  Google Scholar 

  22. Zhou X, Shi J, Li C (2011) Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal = Mn, Fe, and Co). J Phys Chem C 115:8305–8311. https://doi.org/10.1021/jp200022x

    Article  CAS  Google Scholar 

  23. Kennedy BJ, Prodjosantoso AK, Howard CJ (1999) Powder neutron diffraction study of the high temperature phase transitions in NaTaO3. J Phys Condens Matter 11:6319–6327. https://doi.org/10.1088/0953-8984/11/33/302

    Article  CAS  Google Scholar 

  24. Li X, Zang J (2009) Facile hydrothermal synthesis of sodium tantalate (NaTaO3) nanocubes and high photocatalytic properties. J Phys Chem C 113:19411–19418. https://doi.org/10.1021/jp907334z

    Article  CAS  Google Scholar 

  25. Burnett DL, Vincent CD, Clayton JA, Kashtiban RJ, Walton RI (2021) Hydrothermal synthesis of iridium-substituted NaTaO3 perovskites. Nanomaterials 11:7. https://doi.org/10.3390/nano11061537

    Article  CAS  Google Scholar 

  26. Ece Eyi E, Cabuk S (2010) Ab initio study of the structural, electronic and optical properties of NaTaO3. Philos Mag 90:2969. https://doi.org/10.1080/14786431003752159

    Article  CAS  Google Scholar 

  27. Walton RI (2020) Perovskite oxides prepared by hydrothermal and solvothermal synthesis: a review of crystallisation, chemistry, and compositions. Chem Eur J 26:9041–9069. https://doi.org/10.1002/chem.202000707

    Article  CAS  PubMed  Google Scholar 

  28. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152. https://doi.org/10.1107/s0365110x67000234

    Article  CAS  Google Scholar 

  29. Rodriguez-Carvajal J (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, 1990, Toulouse, France, p 127

  30. Chaminade JP, Pouchard M, Hagenmuller P (1972) Tantalates et oxyfluorotantalates de sodium. Rev Chim Miner 9:381–402. https://hal.archives-ouvertes.fr/hal-00125096

  31. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:752–753. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  32. Tyunina M, Pacherova O, Kocourek T, Dejneka A (2021) Anisotropic chemical expansion due to oxygen vacancies in perovskite films. Sci Rep 11:1. https://doi.org/10.1038/s41598-021-93968-1

    Article  CAS  Google Scholar 

  33. Eglitis RI, Purans J, Popov AI, Jia R (2021) Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations at high symmetry cubic structure. Symmetry 13:1. https://doi.org/10.3390/sym13101920

    Article  CAS  Google Scholar 

  34. Zheng WC, Wu SY (2001) Structures of Fe3+-Vo defects in ABO3 perovskite-type crystals. Appl Magn Reson 20:539–544. https://doi.org/10.1007/bf03162336

    Article  CAS  Google Scholar 

  35. Ma Z, Wang Y, Lu Y, Ning H, Zhang J (2021) Tackling challenges in perovskite-type metal oxide photocatalysts. Energy Technol 9:6–17. https://doi.org/10.1002/ente.202001019

    Article  CAS  Google Scholar 

  36. Abramoff M (2007) ImageJ as an image processing tool and library. Microscopy 13:1672–1673. https://doi.org/10.1017/S1431927607079652

    Article  Google Scholar 

  37. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  38. Xu L, Zhang J, Ding J, Liu T, Shi G, Li X, Dang W, Cheng Y, Guo R (2020) Pore structure and fractal characteristics of different shale lithofacies in the Dalong formation in the western area of the lower Yangtze platform. Minerals 10:9–10. https://doi.org/10.3390/min10010072

    Article  CAS  Google Scholar 

  39. Yurdakal S, Garlisi C, Özcan L, Bellardita M, Palmisano G (2019). In: Marcì G, Palmisano L (eds) (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations. Elsevier, Kidlington, p 92. https://doi.org/10.1016/B978-0-444-64015-4.00004-3

    Chapter  Google Scholar 

  40. Ohta K, Ishida H (1988) Comparison among several numerical integration methods for Kramers-Kronig transformation. Appl Spectrosc 42:952–957. https://doi.org/10.1366/000370288443038

    Article  CAS  Google Scholar 

  41. Lichvar P, Liska M, Galusek D (2002) What is the true Kramers-Kronig transform? Ceramics Silikáty 246:25–27

    Google Scholar 

  42. Kozak MI, Zhikharev VN, Puga PP, Loya VY (2017) The Kramers-Kronig relations: validation via calculation technique. IJISET 4:152–159

    Google Scholar 

  43. Jahoda FC (1957) Fundamental absorption of barium oxide from its reflectivity spectrum. Phys Rev 107:1261–1265. https://doi.org/10.1103/physrev.107.1261

    Article  CAS  Google Scholar 

  44. Philipp HR, Taft EA (1959) Optical constants of germanium in the region 1 to 10 eV. Phys Rev 113:1002–1005. https://doi.org/10.1103/physrev.113.1002

    Article  CAS  Google Scholar 

  45. Roessler DM (1965) Kramers-Kronig analysis of reflection data. Br J Appl Phys 16:1119. https://doi.org/10.1088/0508-3443/16/8/310

    Article  CAS  Google Scholar 

  46. Zhu S, Chen TP, Cen ZH, Goh ESM, Yu SF, Liu YC, Liu Y (2010) Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions. Opt Express 18:21930. https://doi.org/10.1364/OE.18.021926

    Article  CAS  Google Scholar 

  47. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  48. Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J Alloys Compd 648:12–13. https://doi.org/10.1016/j.jallcom.2015.06.231

    Article  CAS  Google Scholar 

  49. Ajmi A, Karoui K, Khirouni K, Ben Rhaiem A (2019) Optical and dielectric properties of NaCoPO4 in the three phases α, β and γ. RSC Adv 9:14775. https://doi.org/10.1039/c9ra01558b

    Article  CAS  Google Scholar 

  50. Cheng Y, He L, Xia G, Ren C, Wang Z (2019) Nanostructured g-C3N4/AgI composites assembled by AgI nanoparticles-decorated g-C3N4 nanosheets for effective and mild photooxidation reaction. N J Chem 43:11–12. https://doi.org/10.1039/C9NJ02725D

    Article  Google Scholar 

  51. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4:3641. https://doi.org/10.1021/cs500848f

    Article  CAS  Google Scholar 

  52. Lin B, Yang G, Yang B, Zhao Y (2016) Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Appl Catal B 198:16. https://doi.org/10.1016/j.apcatb.2016.05.069

    Article  CAS  Google Scholar 

  53. Kato H, Kudo A (1999) Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal Lett 58:153–155. https://doi.org/10.1023/a:1019082001809

    Article  CAS  Google Scholar 

  54. Hu C-C, Teng H (2007) Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods. Appl Catal A 331:44–50. https://doi.org/10.1016/j.apcata.2007.07.024

    Article  CAS  Google Scholar 

  55. Liu J, Chen G, Li Z, Zhang Z (2007) Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K). Int J Hydrog Energy 32:2269–2272. https://doi.org/10.1016/j.ijhydene.2006.10.005

    Article  CAS  Google Scholar 

  56. Jiménez-Miramontes JA, Domínguez-Arvizu JL, Salinas-Gutiérrez JM, Meléndez-Zaragoza MJ, López-Ortiz A, Collins-Martínez V (2017) Synthesis, characterization and photocatalytic evaluation of strontium ferrites towards H2 production by water splitting under visible light irradiation. Int J Hydrog Energy 42:30264. https://doi.org/10.1016/j.ijhydene.2017.09.162

    Article  CAS  Google Scholar 

  57. Hernández-Majalca BC, Meléndez-Zaragoza MJ, Salinas-Gutiérrez JM, López-Ortiz A, Collins-Martínez V (2019) Visible-light photo-assisted synthesis of GO-TiO2 composites for the photocatalytic hydrogen production. Int J Hydrog Energy 24:12387. https://doi.org/10.1016/j.ijhydene.2018.10.152

    Article  CAS  Google Scholar 

  58. Nayan MB, Jagadish K, Abhilash MR, Namratha K, Srikantaswamy S (2019) Comparative study on the effects of surface area conduction band and valence band positions on the photocatalytic activity of ZnO–MxOy heterostructures. J Water Resour Prot 11:358. https://doi.org/10.4236/jwarp.2019.113021

    Article  CAS  Google Scholar 

  59. Li D, Song H, Meng X, Shen T, Sun J, Han W, Wang X (2020) Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10:2. https://doi.org/10.3390/nano10030546

    Article  CAS  Google Scholar 

  60. Aslam I, Cao C, Tanveer M, Farooq MH, Khan WS, Tahir M, Idrees F, Khalid S (2015) A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 5:6019–6026. https://doi.org/10.1039/c4ra15847d

    Article  CAS  Google Scholar 

  61. Sarma B, Deb SK, Sarma BK (2016) Photoluminescence and photocatalytic activities of Ag/ZnO metal–semiconductor heterostructure. J Phys Conf Ser 765:1–6. https://doi.org/10.1088/1742-6596/765/1/012023

    Article  CAS  Google Scholar 

  62. Oliveira LH, Paris EC, Avansi W, Ramirez MA, Mastelaro VR, Longo E, Varela JA (2013) Correlation between photoluminescence and structural defects in Ca1+xCu3−xTi4O12 systems. J Am Ceram Soc 96:209–217. https://doi.org/10.1111/jace.12020

    Article  CAS  Google Scholar 

  63. Wang S, Xu X, Luo H, Cao C, Song X, Zhao J, Zhang J, Tang C (2018) Novel SrTiO3/NaTaO3 and visible-light-driven SrTiO3/NaTaO3: N nano-heterojunctions with high interface-lattice matching for efficient photocatalytic removal of organic dye. RSC Adv 8:19282. https://doi.org/10.1039/c8ra02121j

    Article  CAS  Google Scholar 

  64. De Figueiredo AT, Barrado CM, Sousa De, e Silva RL, Alvarenga LD, Motta FV, Paskocimas CA, Bomio MR, (2015) Luminescence property of perovskite structure. Int J N Technol Res 1:22–27

    Google Scholar 

  65. Milanez J, de Figueiredo AT, de Lazaro S, Longo VM, Erlo R, Mastelaro VR, Franco RWA, Longo E, Varela JA (2009) The role of oxygen vacancy in the photoluminescence property at room temperature of the CaTiO3. J Appl Phys 106:1–7. https://doi.org/10.1063/1.3190524

    Article  CAS  Google Scholar 

  66. Wang W, Jiang C, Shen M, Fang L, Zheng F, Wu X, Shen J (2009) Effect of oxygen vacancies on the red emission of SrTiO3:Pr3+ phosphor films. Appl Phys Lett 94:1–3. https://doi.org/10.1063/1.3089814

    Article  CAS  Google Scholar 

  67. Wang W, Tadé MO, Shao Z (2015) Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44:5371–5374. https://doi.org/10.1039/c5cs00113g

    Article  CAS  PubMed  Google Scholar 

  68. Tian L, Guan X, Zong S, Dai A, Qu J (2023) Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13:1–2. https://doi.org/10.3390/catal13020355

    Article  CAS  Google Scholar 

  69. Yang H, Zhang L, Yu L, Wang F, Ma Z, Zhou J, Xu X (2018) Simultaneous regulation of photoabsorption and ferromagnetism of NaTaO3 by Fe doping. Curr Appl Phys 18:9. https://doi.org/10.1016/j.cap.2018.08.009

    Article  Google Scholar 

Download references

Acknowledgements

First author is thankful to Mexican National Council of Humanities Sciences and Technologies (CONAHCyT) for the scholarship provided, and to the members of Nanotechnology, Nanomaterials and Catalysis Laboratories at the Advanced Materials Research Center (CIMAV) for their support in the use of the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Armendariz.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armendariz, S.F., Herrera-Perez, G.M. & Zaragoza-Galan, G. Band Gap Narrowing of Orthorhombic Sodium Tantalate by Iron Doping and Photocatalytic Hydrogen Evolution by Water Splitting. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04546-1

Keywords

Navigation