Skip to main content
Log in

The Role of Branched-chain Amino Acids and Their Metabolism in Cardiovascular Diseases

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential amino acids for protein synthesis. Recent studies have yielded new insights into their diverse physiological and pathological roles in health and disease. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. An increasing number of clinical studies have demonstrated that high levels of circulating BCAAs are associated with an increased risk of CVDs. Animal studies have provided preliminary evidence linking BCAA intake and metabolism with cardiovascular diseases. Despite these insights, the causal relationship between BCAA metabolism and CVD remains poorly established, and the underlying mechanisms remain incompletely understood. Here, we aim to provide an update on the current understanding of the roles of BCAAs and their metabolism in the development and progression of various CVDs. We also discuss the potential strategies targeting BCAA nutrition and metabolism for the prevention and treatment of CVDs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139–64.

    Article  CAS  PubMed  Google Scholar 

  2. Flores-Guerrero JL, Groothof D, Connelly MA, Otvos JD, Bakker SJL, Dullaart RPF. Concentration of branched-chain amino acids is a strong risk marker for incident hypertension. Hypertension (Dallas, Tex: 1979). 2019;74(6):1428–35.

    Article  CAS  PubMed  Google Scholar 

  3. Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 2016;62(4):582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lanfear DE, Gibbs JJ, Li J, She R, Petucci C, Culver JA, et al. Targeted metabolomic profiling of plasma and survival in heart failure patients. JACC Heart Failure. 2017;5(11):823–32.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto K, Tsuchisaka A, Yukawa H. Branched-chain amino acids. Adv Biochem Eng Biotechnol. 2017;159:103–28.

    CAS  PubMed  Google Scholar 

  6. Gojda J, Cahova M. Gut Microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules. 2021;11(10):1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adeva-Andany MM, López-Maside L, Donapetry-García C, Fernández-Fernández C, Sixto-Leal C. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids. 2017;49(6):1005–28.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson WA, Connelly JL. Cellular localization and characterization of bovine liver branched-chain -keto acid dehydrogenases. Biochemistry. 1972;11(10):1967–73.

    Article  CAS  PubMed  Google Scholar 

  9. Paxton R, Harris RA. Isolation of rabbit liver branched chain alpha-ketoacid dehydrogenase and regulation by phosphorylation. J Biol Chem. 1982;257(23):14433–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pettit FH, Yeaman SJ, Reed LJ. Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci USA. 1978;75(10):4881–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Danner DJ, Lemmon SK, Elsas LJ 2nd. Substrate specificity and stabilization by thiamine pyrophosphate of rat liver branched chain alpha-ketoacid dehydrogenase. Biochem Med. 1978;19(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  12. Lau KS, Fatania HR, Randle PJ. Regulation of the branched chain 2-oxoacid dehydrogenase kinase reaction. FEBS Lett. 1982;144(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Jakher Y, Ahrens-Nicklas RC. Brain branched-chain amino acids in maple syrup urine disease: implications for neurological disorders. Int J Mol Sci. 2020;21(20):7490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–23.

    Article  CAS  PubMed  Google Scholar 

  17. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481–8.

    Article  PubMed  Google Scholar 

  18. Bhattacharya S, Granger CB, Craig D, Haynes C, Bain J, Stevens RD, et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. 2014;232(1):191–6.

    Article  CAS  PubMed  Google Scholar 

  19. Yang RY, Wang SM, Sun L, Liu JM, Li HX, Sui XF, et al. Association of branched-chain amino acids with coronary artery disease: a matched-pair case-control study. Nutr Metab, Cardiovascular Diseases: NMCD. 2015;25(10):937–42.

    Article  CAS  PubMed  Google Scholar 

  20. Yang R, Dong J, Zhao H, Li H, Guo H, Wang S, et al. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors. PloS One. 2014;9(6):e99598.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70.

    Article  PubMed  Google Scholar 

  22. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ-Genom Precis Me. 2018;11(4):e002157.

    Article  CAS  Google Scholar 

  23. Zhang Y, Duan Y, Jiang M, He X, Xu S, Guo J, et al. Branched-chain amino acids and risk of stroke: a Mendelian randomization study. Front Neurosci. 2023;17:1143718.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kimberly WT, Wang Y, Pham L, Furie KL, Gerszten RE. Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke. 2013;44(5):1389–95.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Wang J, Zhang H, Pan H, Li Z, Liu Y, et al. Longitudinal association of remnant cholesterol with joint arteriosclerosis and atherosclerosis progression beyond LDL cholesterol. BMC Med. 2023;21(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Zhang K, Zhu Z, Cui M, An Y, Wang Y, et al. Associations between serum metabolites and subclinical atherosclerosis in a Chinese population: the Taizhou imaging study. Aging. 2020;12(15):15302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He L, Palos-Jasso A, Yi Y, Qin M, Qiu L, Yang X, et al. Bioinformatic analysis revealed the essential regulatory genes and pathways of early and advanced atherosclerotic plaque in humans. Cells. 2022;11(24):3976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, et al. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H(2)O(2)-disulfide HMGB1 in macrophages. Redox Biol. 2023;62:102696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Zhang R, Mu H, Zhang W, Zeng J, Li H, et al. Oral administration of branched-chain amino acids attenuates atherosclerosis by inhibiting the inflammatory response and regulating the gut microbiota in ApoE-deficient mice. Nutrients. 2022;14(23):5065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43.

    Article  PubMed  Google Scholar 

  31. Xu Y, Jiang H, Li L, Chen F, Liu Y, Zhou M, et al. Branched-chain amino acid catabolism promotes thrombosis risk by enhancing tropomodulin-3 propionylation in platelets. Circulation. 2020;142(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  32. Du X, Li Y, Wang Y, You H, Hui P, Zheng Y, et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci. 2018;209:167–72.

    Article  CAS  PubMed  Google Scholar 

  33. Du X, You H, Li Y, Wang Y, Hui P, Qiao B, et al. Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI. Sci Rep. 2018;8(1):15809.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Li T, Zhang Z, Kolwicz SC Jr, Abell L, Roe ND, Kim M, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017;25(2):374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang F, Hu G, Chen X, Zhang L, Guo L, Li C, et al. Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduct Target Ther. 2022;7(1):171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hunter WG, Kelly JP, McGarrah RW 3rd, Khouri MG, Craig D, Haynes C, et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart Failure. J Am Heart Assoc. 2016;5(8):e003190.

  38. Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016;133(21):2038–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Z, Xia H, Sharp TE 3rd, LaPenna KB, Elrod JW, Casin KM, et al. Mitochondrial H(2)S regulates BCAA catabolism in heart failure. Circ Res. 2022;131(3):222–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murashige D, Jung JW, Neinast MD, Levin MG, Chu Q, Lambert JP, et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab. 2022;34(11):1749–64.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen M, Gao C, Yu J, Ren S, Wang M, Wynn RM, et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure. J Am Heart Assoc. 2019;8(11):e011625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;311(5):H1160–h9.

    Article  PubMed  Google Scholar 

  43. Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):86.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yu JY, Cao N, Rau CD, Lee RP, Yang J, Flach RJR, et al. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol Sin. 2023;44(7):1380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kimura Y, Okumura T, Kazama S, Shibata N, Oishi H, Arao Y, et al. Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int Heart J. 2020;61(4):739–47.

    Article  CAS  PubMed  Google Scholar 

  46. Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Ishihara T, et al. Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J Cardiol. 2020;75(6):689–96.

    Article  PubMed  Google Scholar 

  47. Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Kimura Y, et al. Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure. Heart Vessels. 2021;36(7):965–77.

    Article  PubMed  Google Scholar 

  48. Portero V, Nicol T, Podliesna S, Marchal GA, Baartscheer A, Casini S, et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic. Cardiovasc Res. 2022;118(7):1742–57.

    Article  CAS  PubMed  Google Scholar 

  49. Mahbub MH, Yamaguchi N, Hase R, Takahashi H, Ishimaru Y, Watanabe R, et al. Plasma branched-chain and aromatic amino acids in relation to hypertension. Nutrients. 2020;12(12)

  50. Mirmiran P, Teymoori F, Asghari G, Azizi F. Dietary intakes of branched chain amino acids and the incidence of hypertension: a population-based prospective cohort study. Arch Iran Med. 2019;22(4):182–8.

    PubMed  Google Scholar 

  51. Liu Y, Zhang C, Zhang Y, Jiang X, Liang Y, Wang H, et al. Association between excessive dietary branched-chain amino acids intake and hypertension risk in Chinese population. Nutrients. 2022;14(13)

  52. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu Y, Wang Y, Ong CN, Subramaniam T, Choi HW, Yuan JM, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia. 2016;59(11):2349–59.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes. 2019;68(9):1730–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (92057107, 32371234, 31900819, 32200965), the Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01), the Science and Technology Program of Tianjin (22JCQNJC01330), and the Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-032A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Sun.

Ethics declarations

Conflict of Interest

H.S. and Y.W. participated in an advisory board for Ramino Bio Ltd. The authors declare no conflict of interest.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y. & Sun, H. The Role of Branched-chain Amino Acids and Their Metabolism in Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 17, 85–90 (2024). https://doi.org/10.1007/s12265-024-10479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-024-10479-w

Keywords

Navigation