Skip to main content
Log in

Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and \({\mathcal {C}}^1\) variation of the domain

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we propose the compact convergence approach to deal with the continuity of attractors of some reaction–diffusion equations under smooth perturbations of the domain subject to nonlinear Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth perturbations will be estimated by a rate of convergence given by the domain variation in a \({\mathcal {C}}^1\) topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. M. Arrieta, F. D. Bezerra, and A. N. Carvalho. Rate of convergence of attractors for some singular perturbed parabolic problems. Topological Methods in Nonlinear Analysis, 41(2):229–253, 2013.

    MathSciNet  Google Scholar 

  2. J. M. Arrieta and S. M. Bruschi. Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation. Mathematical Models and Methods in Applied Sciences, 17(10):1555–1585, 2007.

    Article  MathSciNet  Google Scholar 

  3. J. M. Arrieta and S. M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniform Lipischitz deformation. Discrete and Continuous Dynamical Systems. Series B., 14(2):327–351, 2010.

    Article  MathSciNet  Google Scholar 

  4. J. M. Arrieta and A. N. Carvalho. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. Journal of Differential Equations, 199:143–178, 2004.

    Article  ADS  MathSciNet  Google Scholar 

  5. J. M. Arrieta, A. N. Carvalho, and G. Lozada-Cruz. Dynamics in dumbbell domains I. Continuity of the set of eqiulibria. Journal of Differential Equations, 231(2):551–597, 2006.

    Article  ADS  MathSciNet  Google Scholar 

  6. J. M. Arrieta, A. N. Carvalho, and A. Rodríguez-Bernal. Attractors for parabolic problems with nonlinear boundary bondition. Uniform bounds. Commun. in partial differential equations, 25:1–37, 2000.

  7. J. M. Arrieta, A. Jimenes-Casas, and A. Bernal. Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating at the boundary. Rev. Mat. Iberoamericana, 24(1):183–211, 2008.

    Article  MathSciNet  Google Scholar 

  8. J. M. Arrieta and E. Santamaria. Distance of attractors of reaction-diffusion equations in thin domains. Journal of Differential Equations, 63:4222–4266, 2017.

    Article  MathSciNet  Google Scholar 

  9. P. S. Barbosa and A. L. Pereira. Continuity of attractors for a \(C^1\) perturbation of a smooth domain. Electronic Journal of Differential Equations, 97:1–31, 2020.

    Google Scholar 

  10. P. S. Barbosa, A. L. Pereira, and M. C. Pereira. Continuity of attractors for a family of \(C^1\)-perturbations of the square. Annali di Matematica Pura ed Applicata, 196:1365–1398, 2017.

    Article  MathSciNet  Google Scholar 

  11. V. L. Carbone, A. N. Carvalho and K. Schiabel-Silva. Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Anal. 68:s515–535, 2008.

    Article  MathSciNet  Google Scholar 

  12. A. Carvalho, J. Cholewa, and T. Dlotko. Equi-exponential attraction and rate of convergence of attractors for singularly pertubed evolution equations. Cadernos de matemática, 11:111–151, 2010.

    Google Scholar 

  13. A. N. Carvalho, J. Langa, and J. Robinson. Attractors for infinite-dimensional non-autonomous dynamical systems. Springer, 2010.

  14. A. N. Carvalho and L. Pires. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452:258–296, 2017.

    Article  MathSciNet  Google Scholar 

  15. A. N. Carvalho and L. Pires. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53(1):1–23, 2019.

    Article  MathSciNet  Google Scholar 

  16. A. N. Carvalho and M. R. Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Commun. Pure Appl. Anal., 3:637–651, 2004.

    Article  MathSciNet  Google Scholar 

  17. A. N. Carvalho and S. Piskarev. A general approximation scheme for attractors of abstract parabolic problems. Numer Funct Anal Optim, 27:785–829, 2006.

    Article  MathSciNet  Google Scholar 

  18. D. Daners, Domain perturbation for linear and semi-linear boundary value problems, Handbook of differential equations: stationary partial differential equations, Vol. VI, 1-81, Elsevier/North-Holland, Amsterdam, 2008.

  19. M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser Basel, 2007.

  20. J. K. Hale. Asymptotic behavior of dissipative systems, volume 25. Mathematical surveys and monographs, 1988.

  21. J. K. Hale and G. Raugel. Reaction-diffusion equation on thin domains. J. Math. Pures Appl. (9), 71(1):33–95, 1992.

    MathSciNet  Google Scholar 

  22. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag Berlin Heidelberg New York 1981.

    Book  Google Scholar 

  23. D. Henry. Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations. Cambridge University Press, 2005.

  24. T. Kato. Perturbation Theory for Linear Operators. Springer,Berlin, 1980.

    Google Scholar 

  25. K. Lange. Hadamard’s determinant inequality. Am Math Mon, 121(3):258–259, 2014.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  26. J. Lee. Gromov-Hausdorff stability of reaction diffusion equations with Neumann boundary conditions under perturbations of the domain. Journal of Math. Anal. Applications, 496:1–18, 2021.

    Article  MathSciNet  Google Scholar 

  27. S. M. Oliva and A. L. Pereira. Attractors for parabolic problems with nonlinear boundary conditions in fractional power spaces. Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 9:551–562, 2002.

    MathSciNet  Google Scholar 

  28. L. A. D. Oliveira, A. L. Pereira, and M. C. Pereira. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain. Eletronic Journal of Differential Equations, 100:1–18, 2005.

    Google Scholar 

  29. A. L. Pereira and M. C. Pereira. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. Journal of differential equations, 239:343–370, 2007.

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Pires and R. A. Samprogna. Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain. Topological methods in nonlinear analysis, 58(2):441–452, 2021.

    Article  MathSciNet  Google Scholar 

  31. L. Pires and R. A. Samprogna. Large diffusivity and rate of convergence of attractors in parabolic systems. Filomat, 37(9):2675–2684, 2023.

    Article  MathSciNet  Google Scholar 

  32. N. Varchon, Domain perturbation and invariant manifolds, J. Evol. Equ. 12 3 (2012) 547–569.

    Article  MathSciNet  Google Scholar 

  33. A. Yagi. Abstract Parabolic Evolution Equations and their Applications. Springer-Verlag Berlin Heidelberg 2010.

    Book  Google Scholar 

Download references

Acknowledgements

The first author (MCP) is partially supported by CNPq 308950/2020-8, FAPESP 2020/04813-0 and 2020/14075-6 (Brazil). The second author (LP) acknowledges the hospitality of the Applied Mathematics Department at IME-USP where part of this work was done. We would also like to thank the anonymous referee for the comments and suggestions, which improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcone C. Pereira.

Ethics declarations

Conflict of interest

The authors disclose that there is no financial interest directly or indirectly related to the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.C., Pires, L. Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and \({\mathcal {C}}^1\) variation of the domain. J. Evol. Equ. 24, 5 (2024). https://doi.org/10.1007/s00028-023-00934-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00934-7

Keywords

Mathematics Subject Classification

Navigation