Skip to main content
Log in

Optimal Suppression of Oscillations in the Problem of a Spin-Up of a Two-Mass System

  • OPTIMAL CONTROL
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

We consider a controlled mechanical system of many bodies, consisting of a load-bearing disk that rotates around its axis fixed in space, and a carried disk attached to it using weightless elastic elements. The presented bodies are in the same plane. The problem of minimizing the amplitude of radial oscillations is studied. To solve this problem over a sufficiently large interval, two numerical methods are used: the method of successive approximations in the control space and Newton’s method. The properties of the phase trajectories of the system are studied depending on the initial states of the disks. Various disk spin-up modes are detected. Using the smoothing procedure for optimal control, a continuous control is constructed that reduces the amplitude of radial oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. I. A. Krylov and F. L. Chernousko, “On a method of successive approximations for the solution of problems of optimal control,” USSR Computational Mathematics and Mathematical Physics 2 (6), 1371–1382 (1963).

  2. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Gordon & Breach, N.Y., 1986; Nauka, Moscow, 1983).

  3. S. A. Reshmin and S. A. Vasenin, “Application of the method of successive approximations in solving the boundary problems of the maximum principle on the example of the problem of controlling spin-up of the two-mass system,” Mod. Eur. Res. 1 (3), 186–196 (2022) [in Russian].

    Google Scholar 

  4. A. I. Diveev and S. V. Konstantinov, “Study of the practical convergence of evolutionary algorithms for the optimal program control of a wheeled robot,” J. Comput. Syst. Sci. Int. 57 (4), 561–580 (2018).

    Article  MathSciNet  Google Scholar 

  5. J. L. Garcia Almuzara and I. Flügge-Lotz, “Minimum time control of a nonlinear system,” J. Differ. Equations 4 (1), 12–39 (1968).

    Article  MathSciNet  Google Scholar 

  6. A. I. Ovseevich, “Complexity of the minimum-time damping of a physical pendulum,” SIAM J. Control Optim. 52 (1), 82–96 (2014).

    Article  MathSciNet  Google Scholar 

  7. S. A. Reshmin, “Bifurcation in a time-optimal problem for a second-order non-linear system,” Journal of Applied Mathematics and Mechanics 73 (4), 403–410 (2009).

  8. S. A. Reshmin, “Threshold absolute value of a relay control when time-optimally bringing a satellite to a gravitationally stable position,” J. Comput. Syst. Sci. Int. 57 (5), 713–722 (2018).

    Article  MathSciNet  Google Scholar 

  9. A. A. Galyaev and P. V. Lysenko, “Energy-optimal control of harmonic oscillator,” Autom. Remote Control 80 (1), 16–29 (2019).

    Article  MathSciNet  Google Scholar 

  10. E. K. Lavrovsky, “On quick action in the problem of controlling the vertical position of a pendulum by the movement of its base,” J. Comput. Syst. Sci. Int. 60 (1), 39–47 (2021).

    Article  MathSciNet  Google Scholar 

  11. O. R. Kayumov, “Time-optimal movement of a trolley with a pendulum,” J. Comput. Syst. Sci. Int. 60 (1), 28–38 (2021).

    Article  MathSciNet  Google Scholar 

  12. S. A. Reshmin, “Newton’s method to solve boundary value problems of the maximum principle: The test case of optimal spin-up of a two-mass system,” Mod. Eur. Res. 1 (2), 114–122 (2021).

    Google Scholar 

  13. O. R. Kayumov, “Optimal turning speed of a spring pendulum,” J. Comput. Syst. Sci. Int. 62 (4), 640–653 (2023).

    Article  Google Scholar 

  14. G. M. Rozenblat, “On optimal rotation of a rigid body by applying internal forces,” Dokl. Math. 106 (1), 291–297 (2022).

    Article  MathSciNet  Google Scholar 

  15. F. L. Chernousko, “Optimal control of the motion of a two-mass system,” Dokl. Math. 97 (3) 295–299 (2018).

    Article  MathSciNet  Google Scholar 

  16. F. L. Chernousko and A. M. Shmatkov, “Optimal control of rotation of a rigid body by a movable internal mass,” J. Comput. Syst. Sci. Int. 58 (3), 335–348 (2019).

    Article  MathSciNet  Google Scholar 

  17. N. Yu. Naumov and F. L. Chernousko, “Reorientation of a rigid body controlled by a movable internal mass,” J. Comput. Syst. Sci. Int. 58 (2), 252–259 (2019).

    Article  MathSciNet  Google Scholar 

  18. E. A. Privalov and Yu. K. Zhbanov, “Rod construction of an isotropic elastic suspension of inertial mass,” Mech. Solids 53 (5), 492–500 (2018).

    Article  Google Scholar 

  19. V. F. Zhuravlev, “Van der Pol’s controlled 2D oscillator,” Rus. J. Nonlinear Dyn. 12 (2), 211–222 (2016).

    Google Scholar 

  20. V. F. Zhuravlev, “Van der Pol spatial oscillator: Technical applications,” Mech. Solids 55 (1), 132–137 (2020).

    Article  Google Scholar 

  21. A. I. Ovseevich and A. K. Fedorov, “Feedback control for damping a system of linear oscillators,” Autom. Remote Control 76 (11), 1905–1197 (2015).

    Article  MathSciNet  Google Scholar 

  22. I. M. Ananievski and A. I. Ovseevich, “Controlled motion of a linear chain of oscillators,” J. Comput. Syst. Sci. Int. 60 (5), 686–694 (2021).

    Article  MathSciNet  Google Scholar 

  23. P. S. Voevodin and Yu. M. Zabolotnov, “On stability of the motion of electrodynamic tether system in orbit near the Earth,” Mech. Solids 54 (6), 890–902 (2019).

    Article  Google Scholar 

  24. R. Bellman, Dynamic Programming (Princeton Univ. Press, Princeton, N.J., 1957; Inostrannaya literatura, Moscow, 1960).

  25. S. A. Reshmin, “Qualitative analysis of the traction force of a rotating drive wheel with a weightless tire,” Proc. Steklov Inst. Math. 315 (1), 198–208 (2021).

    Article  MathSciNet  Google Scholar 

  26. L. I. Rozonoer, “Maximum principle in the theory of optimum systems,” Autom. Remote Control 20 (11), 1441–1458 (1959).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-11-00128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Vasenin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasenin, S.A., Reshmin, S.A. Optimal Suppression of Oscillations in the Problem of a Spin-Up of a Two-Mass System. J. Comput. Syst. Sci. Int. 62, 942–955 (2023). https://doi.org/10.1134/S1064230723060114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723060114

Navigation