Skip to main content

Advertisement

Log in

Post Cardiac Arrest Care in the Cardiac Intensive Care Unit

  • Cardiovascular Critical Care (A Higgins and R Lee, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiac arrests constitute a leading cause of mortality in the adult population and cardiologists are often tasked with the management of patients following cardiac arrest either as a consultant or primary provider in the cardiac intensive care unit. Familiarity with evidence-based practice for post-cardiac arrest care is a requisite for optimizing outcomes in this highly morbid group. This review will highlight important concepts necessary to managing these patients.

Recent Findings

Emerging evidence has further elucidated optimal care of post-arrest patients including timing for routine coronary angiography, utility of therapeutic hypothermia, permissive hypercapnia, and empiric aspiration pneumonia treatment.

Summary

The complicated state of multi-organ failure following cardiac arrest needs to be carefully optimized by the clinician to prevent further neurologic injury and promote systemic recovery. Future studies should be aimed at understanding if these findings extend to specific patient populations, especially those at the highest risk for poor outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paudel R, Trinkle CA, Waters CM, Robinson LE, Cassity E, Sturgill JL, et al. Mechanical power: a new concept in mechanical ventilation. Am J Med Sci. 2021;362:537–45.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Giosa L, Busana M, Pasticci I, et al. Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Med Exp. 2019;7:61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tonna JE, Peltan I, Brown SM, Herrick JS, Keenan HT. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med. 2020;46:1941–3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47:1393–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bano D, Nicotera P. Ca2+ Signals and neuronal death in brain ischemia. Stroke. 2007;38:674–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE. Cerebral perfusion and cerebral autoregulation after cardiac arrest. BioMed Res Int. 2018;2018:4143636.

    PubMed  PubMed Central  Google Scholar 

  8. Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–32.

    Article  CAS  PubMed  Google Scholar 

  9. Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589:3039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Kjaergaard J, Møller JE, Schmidt H, et al. Blood-pressure targets in comatose survivors of cardiac arrest N Engl J Med. 2022;387:1456–1466. The BOX trial explores liberal vs restrictive mean arterial blood pressure (MAP) targets in patients resuscitated from cardiac arrest, and their association with death, severe disability, or coma.

  11. Niemelä V, Siddiqui F, Ameloot K, et al. Higher versus lower blood pressure targets after cardiac arrest: systematic review with individual patient data meta-analysis. Resuscitation. 2023. https://doi.org/10.1016/j.resuscitation.2023.109862.

    Article  PubMed  Google Scholar 

  12. Ameloot K, De Deyne C, Eertmans W, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial. Eur Heart J. 2019;40:1804–14.

    Article  CAS  PubMed  Google Scholar 

  13. Griesdale DEG, Sekhon MS, Wood MD, et al. Near-infrared spectroscopy to assess cerebral autoregulation and optimal mean arterial pressure in patients with hypoxic-ischemic brain injury: a prospective multicenter feasibility study. Crit Care Explor. 2020;2: e0217.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leonov Y, Sterz F, Safar P, Radovsky A. Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome. Stroke. 1990;21:1600–6.

    Article  CAS  PubMed  Google Scholar 

  15. Leonov Y, Sterz F, Safar P, Radovsky A, Oku K-I, Tisherman S, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab. 1990;10:57–70.

    Article  CAS  PubMed  Google Scholar 

  16. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  17. Lascarrou J-B, Merdji H, Le Gouge A, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327–37.

    Article  PubMed  Google Scholar 

  18. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–556.

  19. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  20. •• Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–94. The TTM2 trial evaluates the association of targeted hypothermia versus normothermia with death and functional outcomes among patients following cardiac arrest.

  21. Zeiner A, Holzer M, Sterz F, Schörkhuber W, Eisenburger P, Havel C, et al. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch Intern Med. 2001;161:2007–12.

    Article  CAS  PubMed  Google Scholar 

  22. Busto R, Dietrich WD, Globus MY-T, Valdés I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987;7:729–38.

    Article  CAS  PubMed  Google Scholar 

  23. Gebhardt K, Guyette FX, Doshi AA, Callaway CW, Rittenberger JC, Post Cardiac Arrest Service. Prevalence and effect of fever on outcome following resuscitation from cardiac arrest. Resuscitation. 2013;84:1062–7.

    Article  Google Scholar 

  24. Leary M, Grossestreuer AV, Iannacone S, Gonzalez M, Shofer FS, Povey C, et al. Pyrexia and neurologic outcomes after therapeutic hypothermia for cardiac arrest. Resuscitation. 2013;84:1056–61.

    Article  PubMed  Google Scholar 

  25. Winters SA, Wolf KH, Kettinger SA, Seif EK, Jones JS, Bacon-Baguley T. Assessment of risk factors for post-rewarming “rebound hyperthermia” in cardiac arrest patients undergoing therapeutic hypothermia. Resuscitation. 2013;84:1245–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bro-Jeppesen J, Hassager C, Wanscher M, Søholm H, Thomsen JH, Lippert FK, et al. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation. 2013;84:1734–40.

    Article  PubMed  Google Scholar 

  27. Hassager C, Schmidt H, Møller JE, et al. Duration of device-based fever prevention after cardiac arrest. N Engl J Med. 2023;388:888–97.

    Article  PubMed  Google Scholar 

  28. Wang HE, Prince DK, Drennan IR, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators for the. association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303:2165–71.

  30. •• Schmidt H, Kjaergaard J, Hassager C, et al. Oxygen targets in comatose survivors of cardiac arrest N Engl J Med. 2022;387:1467–1476. This paper explores restrictive vs liberal oxygenation strategies in comatose patients after resuscitation for out-of-hospital cardiac arrest.

  31. Reivich M. Arterial Pco2 and cerebral hemodynamics. Am J Physiol-Leg Content. 1964;206:25–35.

    Article  CAS  Google Scholar 

  32. Raichle ME, Plum F. Hyperventilation and cerebral blood flow. Stroke. 1972;3:566–75.

    Article  CAS  PubMed  Google Scholar 

  33. Yoon S, Zuccarello M, Rapoport RM. pCO2 and pH regulation of cerebral blood flow. Front Physiol. 2012;3:365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Eastwood G, Nichol AD, Hodgson C, et al. Mild hypercapnia or normocapnia after out-of-hospital cardiac arrest N Engl J Med. 2023;389:45–57. The TAME trial explores ventilation targets post-arrest and association with favorable neurologic outcomes.

  35. McKenzie N, Williams TA, Tohira H, Ho KM, Finn J. A systematic review and meta-analysis of the association between arterial carbon dioxide tension and outcomes after cardiac arrest. Resuscitation. 2017;111:116–26.

    Article  PubMed  Google Scholar 

  36. Bell JD. In Vogue: ketamine for neuroprotection in acute neurologic injury. Anesth Analg. 2017;124:1237.

  37. Church J, Zeman S, Lodge D. The neuroprotective action of ketamine and MK-801 after transient cerebral ischemia in rats. Anesthesiology. 1988;69:702–9.

    Article  CAS  PubMed  Google Scholar 

  38. Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res. 2001;904:245–51.

    Article  CAS  PubMed  Google Scholar 

  39. Engelhard K, Werner C, Eberspächer E, Bachl M, Blobner M, Hildt E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96:524–531.

  40. Giuliano K, Etchill E, Velez AK, Wilson MA, Blue ME, Troncoso JC, Baumgartner WA, Lawton JS. Ketamine mitigates neurobehavioral deficits in a canine model of hypothermic circulatory arrest. Semin Thorac Cardiovasc Surg. 2023;35:251–8.

    Article  PubMed  Google Scholar 

  41. •• Rajajee V, Muehlschlegel S, Wartenberg KE, et al. Guidelines for neuroprognostication in comatose adult survivors of cardiac arrest Neurocrit Care. 2023;38:533–563. These recently published guidelines from the Neurocritical Care Society review best practices for neuroprognostication in post-arrest patients including a review of the literature supporting various modalities of assessment, and their reliability for predicting poor neurologic outcomes. The guideline clearly calls for a multimodal approach for assessing this patient population and avoiding early withdrawal of life-sustaining therapy in the immediate post resuscitation period.

  42. Mulder M, Gibbs HG, Smith SW, Dhaliwal R, Scott NL, Sprenkle MD, et al. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia. Crit Care Med. 2014;42:2493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grossestreuer AV, Abella BS, Leary M, Perman SM, Fuchs BD, Kolansky DM, et al. Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84:1741–6.

    Article  PubMed  Google Scholar 

  44. Paul M, Bougouin W, Dumas F, et al. Comparison of two sedation regimens during targeted temperature management after cardiac arrest. Resuscitation. 2018;128:204–10.

    Article  CAS  PubMed  Google Scholar 

  45. Paul M, Bougouin W, Geri G, Dumas F, Champigneulle B, Legriel S, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42:1128–36.

    Article  CAS  PubMed  Google Scholar 

  46. Irisawa T, Vadeboncoeur TF, Karamooz M, Mullins M, Chikani V, Spaite DW, et al. Duration of coma in out-of-hospital cardiac arrest survivors treated with targeted temperature management. Ann Emerg Med. 2017;69:36–43.

    Article  PubMed  Google Scholar 

  47. Lee DH, Cho YS, Lee BK, et al. Late awakening is common in settings without withdrawal of life-sustaining therapy in out-of-hospital cardiac arrest survivors who undergo targeted temperature management*. Crit Care Med. 2022;50:235.

    Article  PubMed  Google Scholar 

  48. Estraneo A, Moretta P, Loreto V, Lanzillo B, Cozzolino A, Saltalamacchia A, et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology. 2013;80:464–70.

    Article  PubMed  Google Scholar 

  49. Giacino JT, Katz DI, Schiff ND, et al. Comprehensive systematic review update summary: Disorders of consciousness. Neurology. 2018;91:461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lybeck A, Cronberg T, Aneman A, et al. Time to awakening after cardiac arrest and the association with target temperature management. Resuscitation. 2018;126:166–71.

    Article  PubMed  Google Scholar 

  51. Rey A, Rossetti AO, Miroz J-P, Eckert P, Oddo M. Late awakening in survivors of postanoxic coma: early neurophysiologic predictors and association with ICU and long-term neurologic recovery. Crit Care Med. 2019;47:85–92.

    Article  PubMed  Google Scholar 

  52. Ponz I, Lopez-de-Sa E, Armada E, Caro J, Blazquez Z, Rosillo S, et al. Influence of the temperature on the moment of awakening in patients treated with therapeutic hypothermia after cardiac arrest. Resuscitation. 2016;103:32–6.

    Article  PubMed  Google Scholar 

  53. Tsai M-S, Chen W-J, Chen W-T, Tien Y-T, Chang W-T, Ong H-N, et al. Should we prolong the observation period for neurological recovery after cardiac arrest? Crit Care Med. 2022;50:389–97.

    Article  CAS  PubMed  Google Scholar 

  54. Maupain C, Bougouin W, Lamhaut L, et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2016;37:3222–8.

    Article  PubMed  Google Scholar 

  55. Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27:2840–5.

    Article  PubMed  Google Scholar 

  56. Coppler PJ, Elmer J, Calderon L, Sabedra A, Doshi AA, Callaway CW, et al. Validation of the Pittsburgh Cardiac Arrest Category illness severity score. Resuscitation. 2015;89:86–92.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sutter R, Ristic A, Rüegg S, Fuhr P. Myoclonus in the critically ill: diagnosis, management, and clinical impact. Clin Neurophysiol. 2016;127:67–80.

    Article  PubMed  Google Scholar 

  58. Wijdicks EF, Parisi JE, Sharbrough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35:239–43.

    Article  CAS  PubMed  Google Scholar 

  59. Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, Wiebe S, Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.

    Article  Google Scholar 

  60. Seder DB, Sunde K, Rubertsson S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43:965–72.

    Article  PubMed  Google Scholar 

  61. Elmer J, Rittenberger JC, Faro J, Molyneaux BJ, Popescu A, Callaway CW, et al. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80:175–84.

  62. Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46:1803–51.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee BK, Jeung KW, Lee HY, Jung YH, Lee DH. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia. Resuscitation. 2013;84:1387–92.

    Article  CAS  PubMed  Google Scholar 

  64. Ruijter BJ, Tjepkema-Cloostermans MC, Tromp SC, et al. Early electroencephalography for outcome prediction of postanoxic coma: a prospective cohort study. Ann Neurol. 2019;86:203–14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hirsch LJ, Fong MWK, Leitinger M, et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version. [Miscellaneous Article]. J Clin Neurophysiol. 2021;38:1–29.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Westhall E, Rossetti AO, Van Rootselaar A-F, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86:1482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rossetti AO, Logroscino G, Liaudet L, Ruffieux C, Ribordy V, Schaller MD, et al. Status epilepticus: an independent outcome predictor after cerebral anoxia. Neurology. 2007;69:255–60.

    Article  CAS  PubMed  Google Scholar 

  68. Glauser T, Shinnar S, Gloss D, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the Guideline Committee of the American Epilepsy Society. Epilepsy Curr. 2016;16:48–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, et al. Treating rhythmic and periodic EEG Patterns in comatose survivors of cardiac arrest. N Engl J Med. 2022;386:724–34.

    Article  PubMed  Google Scholar 

  70. Song H, Bang HJ, You Y, Park JS, Kang C, Kim HJ, et al. Novel serum biomarkers for predicting neurological outcomes in postcardiac arrest patients treated with targeted temperature management. Crit Care. 2023;27:113.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stammet P, Collignon O, Hassager C, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. J Am Coll Cardiol. 2015;65:2104–14.

    Article  CAS  PubMed  Google Scholar 

  72. Shinozaki K, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Abe R, et al. S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review. Crit Care. 2009;13:R121.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Coba V, Jaehne AK, Suarez A, Dagher GA, Brown SC, Yang JJ, et al. The incidence and significance of bacteremia in out of hospital cardiac arrest. Resuscitation. 2014;85:196–202.

    Article  PubMed  Google Scholar 

  74. Tsai M-S, Chiang W-C, Lee C-C, et al. Infections in the survivors of out-of-hospital cardiac arrest in the first 7 days. Intensive Care Med. 2005;31:621–6.

    Article  PubMed  Google Scholar 

  75. Perbet S, Mongardon N, Dumas F, et al. Early-onset pneumonia after cardiac arrest. Am J Respir Crit Care Med. 2011;184:1048–54.

    Article  PubMed  Google Scholar 

  76. François B, Cariou A, Clere-Jehl R, et al. Prevention of early ventilator-associated pneumonia after cardiac arrest. N Engl J Med. 2019;381:1831–42.

    Article  PubMed  Google Scholar 

  77. Couper K, Laloo R, Field R, Perkins GD, Thomas M, Yeung J. Prophylactic antibiotic use following cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2019;141:166–73.

    Article  PubMed  Google Scholar 

  78. Gagnon DJ, Nielsen N, Fraser GL, et al. Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management. Resuscitation. 2015;92:154–9.

    Article  PubMed  Google Scholar 

  79. Wood T, Thoresen M. Physiological responses to hypothermia. Semin Fetal Neonatal Med. 2015;20:87–96.

    Article  PubMed  Google Scholar 

  80. Powell RW, Dyess DL, Collins JN, Roberts WS, Tacchi EJ, Swafford AN, et al. Regional blood flow response to hypothermia in premature, newborn, and neonatal piglets. J Pediatr Surg. 1999;34:193–8.

    Article  CAS  PubMed  Google Scholar 

  81. Madden LK, Hill M, May TL, Human T, Guanci MM, Jacobi J, et al. The implementation of targeted temperature management: an evidence-based guideline from the Neurocritical Care Society. Neurocrit Care. 2017;27:468–87.

    Article  PubMed  Google Scholar 

  82. Meinert E, Bell MJ, Buttram S, Kochanek PM, Balasubramani GK, Wisniewski SR, et al. Initiating nutritional support before 72 hours is associated with favorable outcome after severe traumatic brain injury in children: a secondary analysis of a randomized, controlled trial of therapeutic hypothermia. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2018;19:345–52.

    Google Scholar 

  83. Tian F, Heighes PT, Allingstrup MJ, Doig GS. Early enteral nutrition provided within 24 hours of ICU admission: a meta-analysis of randomized controlled trials. Crit Care Med. 2018;46:1049–56.

    Article  PubMed  Google Scholar 

  84. Doig GS, Heighes PT, Simpson F, Sweetman EA. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury. 2011;42:50–6.

    Article  PubMed  Google Scholar 

  85. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40:159–211.

    Article  CAS  PubMed  Google Scholar 

  86. Gutierrez A, Carlson C, Kalra R, Elliott AM, Yannopoulos D, Bartos JA. Outcomes associated with delayed enteral feeding after cardiac arrest treated with veno-arterial extracorporeal membrane oxygenation and targeted temperature management. Resuscitation. 2021;164:20–6.

    Article  PubMed  Google Scholar 

  87. Martin M, Reignier J, Le Thuaut A, et al. Nutrition during targeted temperature management after cardiac arrest: observational study of neurological outcomes and nutrition tolerance. J Parenter Enter Nutr. 2020;44:138–45.

    Article  Google Scholar 

  88. Tujjar O, Mineo G, Dell’Anna A, Poyatos-Robles B, Donadello K, Scolletta S, et al. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yanta J, Guyette FX, Doshi AA, Callaway CW, Rittenberger JC, Post Cardiac Arrest Service. Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. Resuscitation. 2013;84:1371–4.

    Article  Google Scholar 

  90. Geri G, Guillemet L, Dumas F, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. 2015;41:1273–80.

    Article  PubMed  Google Scholar 

  91. Beitland S, Nakstad ER, Staer-Jensen H, Draegni T, Andersen GØ, Jacobsen D, et al. Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand. 2016;60:1170–81.

    Article  CAS  PubMed  Google Scholar 

  92. Sandroni C, Dell’Anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies Minerva Anestesiol. 2016;82:989–999.

  93. Winther-Jensen M, Kjaergaard J, Lassen JF, Køber L, Torp-Pedersen C, Hansen SM, et al. Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005–2013. Scand Cardiovasc J SCJ. 2018;52:238–43.

    Article  CAS  PubMed  Google Scholar 

  94. Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.

    Article  PubMed  Google Scholar 

  95. Krag M, Marker S, Perner A, et al. Pantoprazole in patients at risk for gastrointestinal bleeding in the ICU. N Engl J Med. 2018;379:2199–208.

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y, Ge L, Ye Z, et al. Efficacy and safety of gastrointestinal bleeding prophylaxis in critically ill patients: an updated systematic review and network meta-analysis of randomized trials. Intensive Care Med. 2020;46:1987–2000.

    Article  PubMed  Google Scholar 

  97. Oksanen T, Skrifvars MB, Varpula T, Kuitunen A, Pettilä V, Nurmi J, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med. 2007;33:2093–100.

    Article  CAS  PubMed  Google Scholar 

  98. American Diabetes Association Professional Practice Committee. 16. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2021;45:S244–53.

    Article  Google Scholar 

  99. Kirkegaard H, Søreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2017;318:341–50.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Le May M, Osborne C, Russo J, et al. Effect of moderate vs mild therapeutic hypothermia on mortality and neurologic outcomes in comatose survivors of out-of-hospital cardiac arrest: The CAPITAL CHILL randomized clinical trial. JAMA. 2021;326:1494–503.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Martinell L, Nielsen N, Herlitz J, et al. Early predictors of poor outcome after out-of-hospital cardiac arrest. Crit Care. 2017;21:96.

    Article  PubMed  PubMed Central  Google Scholar 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145:e153–639.

    Article  PubMed  Google Scholar 

  2. Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cardiac Arrest Registry to Enhance Survival. Accessed August 13, 2023. https://mycares.net.

  4. Spaulding CM, Joly L-M, Rosenberg A, Monchi M, Weber SN, Dhainaut J-FA, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336:1629–33.

    Article  CAS  PubMed  Google Scholar 

  5. Larsen JM, Ravkilde J. Acute coronary angiography in patients resuscitated from out-of-hospital cardiac arrest—a systematic review and meta-analysis. Resuscitation. 2012;83:1427–33.

    Article  PubMed  Google Scholar 

  6. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010;3:200–7.

    Article  PubMed  Google Scholar 

  7. Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology Circulation. 1992;85:I19-24.

    CAS  PubMed  Google Scholar 

  8. Wallmuller C, Meron G, Kurkciyan I, Schober A, Stratil P, Sterz F. Causes of in-hospital cardiac arrest and influence on outcome. Resuscitation. 2012;83:1206–11.

    Article  PubMed  Google Scholar 

  9. Albert M, Herlitz J, Rawshani A, et al. Aetiology and outcome in hospitalized cardiac arrest patients. Eur Heart J Open. 2023;3:oead066.

  10. •• Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation. 2021;161:220–69. The ERC/ESICM guidelines outline the post-resuscitation practices and standard of care post-arrest. The topics covered include etiology/diagnosis of cardiac arrest, oxygenation and ventilation targets, coronary revascularization, hemodynamic monitoring, general intensive care management, prognostication, and rehabilitation post-arrest.

    Article  PubMed  Google Scholar 

  11. •• Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post–cardiac arrest care. Circulation. 2015;132:S465–82. The AHA Post cardiac guidelines outline best practices and standards of care for post-arrest patients similar to the ERC/ESICM guidelines above. The document includes a comprehensive review of the literature regarding many details of patient care up to the time of publication.

  12. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary. Circulation. 2013;127:529–55.

    Article  PubMed  Google Scholar 

  13. Belohlavek J, Smalcova J, Rob D, et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2022;327:737–47.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez MR, Esposito EC, Leary M, Gaieski DF, Kolansky DM, Chang G, et al. Initial clinical predictors of significant coronary lesions after resuscitation from cardiac arrest. Ther Hypothermia Temp Manag. 2012;2:73–7.

    Article  PubMed  Google Scholar 

  15. Dumas F, Manzo-Silberman S, Fichet J, et al. Can early cardiac troponin I measurement help to predict recent coronary occlusion in out-of-hospital cardiac arrest survivors? Crit Care Med. 2012;40:1777–84.

    Article  CAS  PubMed  Google Scholar 

  16. • Pareek N, Kordis P, Beckley-Hoelscher N, et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2 Eur Heart J. 2020;41:4508–4517. This paper outlines the MIRACLE2 score, a validated severity score predictive of poor prognosis following cardiac arrest.

  17. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019;380:1397–407.

    Article  PubMed  Google Scholar 

  18. Kern KB, Radsel P, Jentzer JC, Seder DB, Lee KS, Lotun K, et al. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: The PEARL study. Circulation. 2020;142:2002–12.

    Article  PubMed  Google Scholar 

  19. Desch S, Freund A, Akin I, et al. Angiography after out-of-hospital cardiac arrest without ST-Segment Elevation. N Engl J Med. 2021;385:2544–53.

    Article  PubMed  Google Scholar 

  20. Hauw-Berlemont C, Lamhaut L, Diehl J-L, et al. Emergency vs delayed coronary angiogram in survivors of out-of-hospital cardiac arrest: results of the randomized, multicentric EMERGE trial. JAMA Cardiol. 2022;7:700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al Lawati K, Forestell B, Binbraik Y, et al. Early versus delayed coronary angiography after out-of-hospital cardiac arrest without ST-segment elevation-a systematic review and meta-analysis of randomized controlled trials. Crit Care Explor. 2023;5: e0874.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goel V, Bloom JE, Dawson L, et al. Early versus deferred coronary angiography following cardiac arrest. A systematic review and meta-analysis. Resusc Plus. 2023;14:100381.

  23. Pareek N, Beckley-Hoelscher N, Kanyal R, et al. MIRACLE2 score and SCAI grade to identify patients with out-of-hospital cardiac arrest for immediate coronary angiography. JACC Cardiovasc Interv. 2022;15:1074–84.

    Article  PubMed  Google Scholar 

  24. Dumas F, Bougouin W, Geri G, et al. Emergency percutaneous coronary intervention in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II Registry. JACC Cardiovasc Interv. 2016;9:1011–8.

    Article  PubMed  Google Scholar 

  25. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80.

    Article  PubMed  Google Scholar 

  26. Argaud L, Cour M, Dubien P-Y, et al. Effect of cyclosporine in nonshockable out-of-hospital cardiac arrest: the CYRUS randomized clinical trial. JAMA Cardiol. 2016;1:557–65.

    Article  PubMed  Google Scholar 

  27. Laurent I, Monchi M, Chiche J-D, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–6.

    Article  PubMed  Google Scholar 

  28. Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, Díaz-Castellanos MA, Rucabado-Aguilar L, Gómez-Jiménez FJ, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66:175–81.

    Article  PubMed  Google Scholar 

  29. Anderson RJ, Jinadasa SP, Hsu L, Ghafouri TB, Tyagi S, Joshua J, Mueller A, Talmor D, Sell RE, Beitler JR. Shock subtypes by left ventricular ejection fraction following out-of-hospital cardiac arrest. Crit Care. 2018;22:162.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bougouin W, Cariou A. Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care. 2013;19:195.

    Article  PubMed  Google Scholar 

  31. Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation. 2002;106:562–8.

    Article  PubMed  Google Scholar 

  32. Adrie C, Laurent I, Monchi M, Cariou A, Dhainaou J-F, Spaulding C. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care. 2004;10:208.

    Article  PubMed  Google Scholar 

  33. Jozwiak M, Bougouin W, Geri G, Grimaldi D, Cariou A. Post-resuscitation shock: recent advances in pathophysiology and treatment. Ann Intensive Care. 2020;10:170.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robba C, Siwicka-Gieroba D, Sikter A, Battaglini D, Dąbrowski W, Schultz MJ, et al. Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp. 2020;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hékimian G, Baugnon T, Thuong M, et al. Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock. 2004;22:116.

    Article  PubMed  Google Scholar 

  36. Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003;348:727–34.

    Article  CAS  PubMed  Google Scholar 

  37. Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, Katsios N, Papastylianou A, Gkisioti S, et al. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med. 2009;169:15–24.

    Article  CAS  PubMed  Google Scholar 

  38. Mentzelopoulos SD, Malachias S, Chamos C, et al. Vasopressin, steroids, and epinephrine and neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013;310:270–9.

    Article  PubMed  Google Scholar 

  39. Mentzelopoulos SD, Pappa E, Malachias S, et al. Physiologic effects of stress dose corticosteroids in in-hospital cardiac arrest (CORTICA): a randomized clinical trial. Resusc Plus. 2022;10: 100252.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Donnino MW, Andersen LW, Berg KM, et al. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, double-blind, placebo-controlled, trial. Crit Care Lond Engl. 2016;20:82.

    Article  Google Scholar 

  41. • Bougouin W, Slimani K, Renaudier M, et al. Epinephrine versus norepinephrine in cardiac arrest patients with post-resuscitation shock. Intensive Care Med. 2022;48:300–10. Bourgouin et al. explore epinephrine or norepinephrine as the continuous intravenous vasopressor of choice to treat post-resuscitation shock.

  42. Kern KB, Hilwig RW, Berg RA, Rhee KH, Sanders AB, Otto CW, et al. Postresuscitation left ventricular systolic and diastolic dysfunction. Circulation. 1997;95:2610–3.

    Article  CAS  PubMed  Google Scholar 

  43. Stroshane RM, Koss RF, Biddlecome CE, Luczkowec C, Edelson J. Oral and intravenous pharmacokinetics of milrinone in human volunteers. J Pharm Sci. 1984;73:1438–41.

    Article  CAS  PubMed  Google Scholar 

  44. DOBUTamine Hydrochloride in 5% Dextrose Injection [Package Insert]. Deerfield, IL: Baxter Healthcare Corp.; 2012.

  45. Richard C, Warszawski J, Anguel N, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome a randomized controlled trial. JAMA. 2003;290:2713–20.

    Article  CAS  PubMed  Google Scholar 

  46. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, et al. Impact of the pulmonary artery catheter in critically ill patients meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70.

    Article  CAS  PubMed  Google Scholar 

  47. The ESCAPE Investigators and ESCAPE Study Coordinators*. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness the ESCAPE trial. JAMA. 2005;294:1625–33.

    Article  Google Scholar 

  48. Garan AR, Kanwar M, Thayer KL, et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. JACC Heart Fail. 2020;8:903–13.

    Article  PubMed  Google Scholar 

  49. Kadosh BS, Berg DD, Bohula EA, et al. Pulmonary artery catheter use and mortality in the cardiac intensive care unit. JACC Heart Fail. 2023. https://doi.org/10.1016/j.jchf.2023.04.007.

    Article  PubMed  Google Scholar 

  50. •• Geller BJ, Sinha SS, Kapur NK, et al. Escalating and de-escalating temporary mechanical circulatory support in cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2022;146:e50–68. This scientific statement from AHA provides expert opinion on the escalation and de-escalation of temporary MCS for cardiogenic shock in contemporary clinical practice.

  51. Abrams D, Combes A, Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol. 2014;63:2769–78.

    Article  PubMed  Google Scholar 

  52. Abrams D, MacLaren G, Lorusso R, et al. Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications. Intensive Care Med. 2022;48:1–15.

    Article  PubMed  Google Scholar 

  53. Yannopoulos D, Bartos J, Raveendran G, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. The Lancet. 2020;396:1807–16.

    Article  Google Scholar 

  54. ELSO International Summary of Statistics | ECMO | ECLS. https://www.elso.org/registry/internationalsummaryandreports/internationalsummary.aspx. Accessed 3 Aug 2023.

  55. Suverein MM, Delnoij TSR, Lorusso R, et al. Early extracorporeal cPR for refractory out-of-hospital cardiac arrest. N Engl J Med. 2023;388:299–309.

    Article  PubMed  Google Scholar 

  56. Ubben JFH, Heuts S, Delnoij TSR, et al. ECPR for refractory OHCA – lessons from 3 randomized controlled trials. The trialists' view. Eur Heart J Acute Cardiovasc Care. 2023 Aug;12(8):540–547.

  57. Epstein AE, DiMarco JP, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities. Circulation. 2008;117:e350–408.

    PubMed  Google Scholar 

  58. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2022;43:3997–4126.

    Article  PubMed  Google Scholar 

  59. Ladejobi A, Pasupula DK, Adhikari S, et al. Implantable defibrillator therapy in cardiac arrest survivors with a reversible cause. Circ Arrhythm Electrophysiol. 2018;11: e005940.

    Article  PubMed  Google Scholar 

  60. Wyse DG, Friedman PL, Brodsky MA, et al. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001;38:1718–24.

    Article  CAS  PubMed  Google Scholar 

  61. Kusumoto FM, Calkins H, Boehmer J, et al. HRS/ACC/AHA Expert Consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation. 2014;130:94–125.

    Article  PubMed  Google Scholar 

  62. Piccini JP, White JA, Mehta RH, et al. Sustained ventricular tachycardia and ventricular fibrillation complicating non–ST-segment–elevation acute coronary syndromes. Circulation. 2012;126:41–9.

    Article  PubMed  Google Scholar 

  63. Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest: oxygenation, ventilation, infection, and injury. Chest. 2018;153:1466–77.

    Article  PubMed  Google Scholar 

  64. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: Post–cardiac arrest care. Circulation. 2010;122:S768–86.

    Article  PubMed  Google Scholar 

  65. Alviar CL, Miller PE, McAreavey D, Katz JN, Lee B, Moriyama B, Soble J, Van Diepen S, Solomon MA, Morrow DA. Positive pressure ventilation in the cardiac intensive care unit. J Am Coll Cardiol. 2018;72:1532–53.

    Article  PubMed  Google Scholar 

  66. Harmon MB, van Meenen DM, van der Veen AL, et al. Practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management: a substudy of the targeted temperature management trial. Resuscitation. 2018;129:29–36.

  67. Writing Group for the PReVENT Investigators. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA. 2018;320:1872–80.

    Article  PubMed Central  Google Scholar 

  68. Sutherasan Y, Peñuelas O, Muriel A, et al. Management and outcome of mechanically ventilated patients after cardiac arrest. Crit Care. 2015;19:215.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beitler JR, Ghafouri TB, Jinadasa SP, et al. Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med. 2017;195:1198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Farias LL, Faffe DS, Xisto DG, Santana MCE, Lassance R, Prota LFM, et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol. 2005;98:53–61.

    Article  PubMed  Google Scholar 

  71. Robba C, Badenes R, Battaglini D, et al. Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial. Intensive Care Med. 2022;48:1024–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Anzueto A, Frutos-Vivar F, Esteban A, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 2004;30:612–9. This review article explores different parameters of lung-protective ventilation and strategies for optimal ventilation following cardiac arrest.

  73. Ioannidis G, Lazaridis G, Baka S, et al. Barotrauma and pneumothorax J Thorac Dis. 2015;7:S38–43.

    PubMed  Google Scholar 

  74. Battaglini D, Pelosi P, Robba C. Ten rules for optimizing ventilatory settings and targets in post-cardiac arrest patients. Crit Care. 2022;26:1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Elliott.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, D., Dahiya, G., Mutirangura, P. et al. Post Cardiac Arrest Care in the Cardiac Intensive Care Unit. Curr Cardiol Rep 26, 35–49 (2024). https://doi.org/10.1007/s11886-023-02015-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-02015-0

Keywords

Navigation