Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors

Abstract

In some cancers mutant p53 promotes the occurrence, development, metastasis and drug resistance of tumours, with targeted protein degradation seen as an effective therapeutic strategy. However, a lack of specific autophagy receptors limits this. Here, we propose the synthesis of biomimetic nanoreceptors (NRs) that mimic selective autophagy receptors. The NRs have both a component for targeting the desired protein, mutant-p53-binding peptide, and a component for enhancing degradation, cationic lipid. The peptide can bind to mutant p53 while the cationic lipid simultaneously targets autophagosomes and elevates the levels of autophagosome formation, increasing mutant p53 degradation. The NRs are demonstrated in vitro and in a patient-derived xenograft ovarian cancer model in vivo. The work highlights a possible direction for treating diseases by protein degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of engineered biomimetic NRs to mimic autophagy receptors.
Fig. 2: NRs induce remarkable degradation of mutp53.
Fig. 3: NRs cause the autophagy-dependent degradation of mutp53.
Fig. 4: Degradation of mutp53 by NRs abrogated mutp53-conferred GOF phenotypes.
Fig. 5: NRs significantly inhibited tumour growth in ES-2 tumour-bearing mice.
Fig. 6: NRs exhibited remarkable therapeutic efficacy in the PDX ovarian model.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available within the paper and its supplementary information. All the relevant data acquired during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Levine, A. J. & Oren, M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749–758 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shaw, P. H. The role of p53 in cell cycle regulation. Pathol. Res. Pract. 192, 669–675 (1996).

    CAS  PubMed  Google Scholar 

  3. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).

    CAS  PubMed  Google Scholar 

  4. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    CAS  PubMed  Google Scholar 

  5. The Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    PubMed Central  Google Scholar 

  6. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Bertheau, P. et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 22, S27–S29 (2013).

    PubMed  Google Scholar 

  8. Freed-Pastor, W. A. & Prives, C. Mutant p53: one name, many proteins. Genes Dev. 26, 1268–1286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Muller, P. A. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    CAS  PubMed  Google Scholar 

  10. Yue, X. et al. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J. Mol. Biol. 429, 1595–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lukashchuk, N. & Vousden, K. H. Ubiquitination and degradation of mutant p53. Mol. Cell Biol. 27, 8284–8295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulz-Heddergott, R. et al. Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion. Cancer Cell 34, 298–314 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, C. et al. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 12, 674–687 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89–102 (2018).

    CAS  PubMed  Google Scholar 

  15. Parrales, A. & Iwakuma, T. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol. 5, 288 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. J. et al. Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8. Biomaterials 271, 120720 (2021).

    CAS  PubMed  Google Scholar 

  17. Qian, J. et al. Enhancing chemotherapy of p53‐mutated cancer through ubiquitination‐dependent proteasomal degradation of mutant p53 proteins by engineered ZnFe‐4 nanoparticles. Adv. Funct. Mater. 30, 2001994 (2020).

  18. Kocaturk, N. M. & Gozuacik, D. Crosstalk between mammalian autophagy and the ubiquitin–proteasome system. Front. Cell Dev. Biol. 6, 128 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Jing, M. et al. Photoresponsive PAMAM-assembled nanocarrier loaded with autophagy inhibitor for synergistic cancer therapy. Small 17, e2102295 (2021).

    PubMed  Google Scholar 

  20. Lee, C. W. et al. Selective autophagy degrades nuclear pore complexes. Nat. Cell Biol. 22, 159–166 (2020).

    CAS  PubMed  Google Scholar 

  21. Zhang, Y. et al. Harnessing copper–palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat. Commun. 9, 4236 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

    CAS  PubMed  Google Scholar 

  23. Kirkin, V. & Rogov, V. V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76, 268–285 (2019).

    CAS  PubMed  Google Scholar 

  24. Shaid, S., Brandts, C. H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 20, 21–30 (2013).

    CAS  PubMed  Google Scholar 

  25. Sarraf, S. A. et al. Loss of TAX1BP1-directed autophagy results in protein aggregate accumulation in the brain. Mol. Cell 80, 779–795 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jo, C. et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496 (2014).

    PubMed  Google Scholar 

  27. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  PubMed  Google Scholar 

  28. Guida, E. et al. Peptide aptamers targeting mutant p53 induce apoptosis in tumor cells. Cancer Res. 68, 6550–6558 (2008).

    CAS  PubMed  Google Scholar 

  29. Man, N., Chen, Y., Zheng, F., Zhou, W. & Wen, L. P. Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy 6, 449–454 (2010).

    CAS  PubMed  Google Scholar 

  30. Roberts, R. et al. Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery. Autophagy 9, 667–682 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    CAS  PubMed  Google Scholar 

  32. Li, M., Luo, J., Brooks, C. L. & Gu, W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277, 50607–50611 (2002).

    CAS  PubMed  Google Scholar 

  33. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).

    CAS  PubMed  Google Scholar 

  34. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    CAS  PubMed  Google Scholar 

  35. Alexandrova, E. M. et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523, 352–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Parrales, A. et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 18, 1233–1243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Proia, D. A. & Bates, R. C. Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Res. 74, 1294–1300 (2014).

    CAS  PubMed  Google Scholar 

  40. Padmanabhan, A. et al. USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nat. Commun. 9, 1270 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Garufi, A. et al. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis. 5, e1271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019).

    CAS  PubMed  Google Scholar 

  43. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1205700 to X.Y.), the National Natural Science Foundation of China (T2222014 and 32071398 to Y.Z., 82150118 and 32171375 to L.W., U22A20156 and 51822302 to X.Y., 82202305 to J.Q., 52203163 to Z.C.), the Key R&D Program of Guangdong Province (2020B1515120096 and 2022B0202010002 to Y.Z., 2020B0101030006 to L.W.), the China Postdoctoral Science Foundation (2023M741211 to X.H. and 2023T160230 to J.Q.), Basic and Applied Basic Research of Guangzhou (2023A04J1821 to J.Q.) and the Major Science and Technology projects in the Xinjiang Uygur Autonomous Region (2022A02004 to Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

X.H., Z.C. and J.Q. designed and performed the majority of experiments, analysed the data and wrote the manuscript. T.D. helped detect the SPR of proteins. Y.W. and H.Z. constructed the related plasmids. S.Z., Xiaoli Wang, X.R., W.Z. and Y.X. helped construct the animal models. G.Y provided samples for establishing PDX models. Xingwu Wang provided important support to carry out the in vitro ubiquitination experiment. Y.Z., L.W. and X.Y. conceived the idea, designed the study, interpreted data and revised the final manuscript.

Corresponding authors

Correspondence to Xianzhu Yang, Longping Wen or Yunjiao Zhang.

Ethics declarations

Competing interests

Y.Z., X.H., Z.C., X.Y. and L.W. have submitted two patent applications (202211119762.4, PCT/CN2023/113588) related to this study. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Peter Tsevtkov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–45 and Tables 1–3.

Reporting Summary

Supplementary Video 1

Video of live EGFP–LC3/MDA-MB-231 cells co-incubated with Cy5-labelled mNRs for 2 h. Red, mNRs; green, LC3.

Supplementary Video 2

Video of live EGFP–LC3/MDA-MB-231 cells co-incubated with Cy5-labelled NRs for 2 h. Red, NRs; green, LC3.

Supplementary Data 1

Unprocessed western blots and/or gels for Supplementary Figs. 4, 15, 17, 20–24, 28, 29, 31, 34a and 41.

Source data

Source Data Figs. 2–6

Unprocessed western blots and/or gels for Figs. 2a,c,e,g–i, 3a,b,f,g,i–k, 4b, 5h and 6e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Cao, Z., Qian, J. et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat. Nanotechnol. 19, 545–553 (2024). https://doi.org/10.1038/s41565-023-01562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01562-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research