Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2024

[Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly

  • Jonas R. Schmid ORCID logo , Anja Wiesner ORCID logo , Patrick Voßnacker ORCID logo , Martin Jansen ORCID logo EMAIL logo and Sebastian Riedel ORCID logo EMAIL logo

Abstract

The compounds [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4] were synthesized from commercially available starting materials and fully characterized by single-crystal X-ray diffraction, NMR, IR and Raman spectroscopy, as well as mass spectrometry. Both ammonium cations show potential for applications in crystal engineering due to their structure directing properties in the solid state.


Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.



Corresponding authors: Martin Jansen, Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany, E-mail: ; and Sebastian Riedel, Anorganische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany; E-mail:

Acknowledgment

We gratefully acknowledge the Core Facility BioSupraMol supported by the DFG. Open Access funding enabled and organized by Projekt DEAL.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. JRS performed the experiments and created the first draft of the manuscript. AW and PV performed single-crystal x-ray diffraction measurements. MJ and SR guided the project and corrected the drafts.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46, 8342–8356; https://doi.org/10.1002/anie.200700534.Search in Google Scholar PubMed

2. Corpinot, M. K., Bučar, D.-K. Cryst. Growth Des. 2019, 19, 1426–1453; https://doi.org/10.1021/acs.cgd.8b00972.Search in Google Scholar

3. Nangia, A. K., Desiraju, G. R. Angew. Chem. Int. Ed. 2019, 58, 4100–4107; https://doi.org/10.1002/anie.201811313.Search in Google Scholar PubMed

4. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Search in Google Scholar PubMed

5. Brammer, L., Peuronen, A., Roseveare, T. M. Acta Crystallogr. 2023, C79, 204–216.10.1107/S2053229623004072Search in Google Scholar PubMed PubMed Central

6. Schulz-Dobrick, M., Jansen, M. Inorg. Chem. 2007, 46, 4380–4382; https://doi.org/10.1021/ic700434x.Search in Google Scholar PubMed

7. Gruber, F., Schulz-Dobrick, M., Jansen, M. Chem. Eur. J. 2010, 16, 1464–1469; https://doi.org/10.1002/chem.200902538.Search in Google Scholar PubMed

8. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Search in Google Scholar

9. Scheiner, S. J. Chem. Phys. 2020, 153, 140901; https://doi.org/10.1063/5.0026168.Search in Google Scholar PubMed

10. Jansen, M. Angew Chem. Int. Ed. Engl. 1987, 26, 1098–1110; https://doi.org/10.1002/anie.198710981.Search in Google Scholar

11. Saßmannshausen, J. Dalton Trans. 2012, 41, 1919–1923; https://doi.org/10.1039/c1dt11213a.Search in Google Scholar

12. Reger, D. L., Debreczeni, A., Horger, J. J., Smith, M. D. Cryst. Growth Des. 2011, 11, 4068–4079; https://doi.org/10.1021/cg200636k.Search in Google Scholar

13. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Search in Google Scholar

14. Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., Beer, P. D. Chem. Rev. 2015, 115, 7118–7195; https://doi.org/10.1021/cr500674c.Search in Google Scholar

15. Batten, S. R., Champness, N. R. Philos. Trans.: Math., Phys. Eng. Sci. 2017, 375, 4, 20160032; https://doi.org/10.1098/rsta.2016.0032.Search in Google Scholar

16. Gruzdev, M. S., Vorobeva, V. E., Zueva, E. M., Chervonova, U. V., Petrova, M. M., Domracheva, N. E. Polyhedron 2018, 155, 415–424; https://doi.org/10.1016/j.poly.2018.08.072.Search in Google Scholar

17. Harris, N., Shaik, S., Schröder, D., Schwarz, H. Helv. Chim. Acta 1999, 82, 1784–1797; https://doi.org/10.1002/(sici)1522-2675(19991006)82:10<1784::aid-hlca1784>3.0.co;2-m.10.1002/(SICI)1522-2675(19991006)82:10<1784::AID-HLCA1784>3.0.CO;2-MSearch in Google Scholar

18. Shirali, K., Shelton, W. A., Vekhter, I. J. Phys.: Condens. Matter 2020, 33, 035702; https://doi.org/10.1088/1361-648x/abbdbc.Search in Google Scholar

19. Rauch, F., Fuchs, S., Friedrich, A., Sieh, D., Krummenacher, I., Braunschweig, H., Finze, M., Marder, T. B. Chem. Eur. J. 2020, 26, 12794–12808; https://doi.org/10.1002/chem.201905559.Search in Google Scholar

20. Fuhrer, T. J., Houck, M., Iacono, S. T. ACS Omega 2021, 6, 32607–32617; https://doi.org/10.1021/acsomega.1c04175.Search in Google Scholar

21. Bondi, A. J. Phys. Chem. 1964, 68, 441–451; https://doi.org/10.1021/j100785a001.Search in Google Scholar

22. Alkorta, I., Rozas, I., Elguero, J. J. Am. Chem. Soc. 2002, 124, 8593–8598; https://doi.org/10.1021/ja025693t.Search in Google Scholar PubMed

23. Reichenbächer, K., Süss, H. I., Hulliger, J. Chem. Soc. Rev. 2005, 34, 22–30; https://doi.org/10.1039/b406892k.Search in Google Scholar PubMed

24. Opus (version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Search in Google Scholar

25. OriginPro (version 9.9.0.220), Data Analysis and Graphing Software; OriginLab Corp.: Northampton, Massachusetts (USA), 2022.Search in Google Scholar

26. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Granger, P., Hoffman, R. E., Zilm, K. W. Pure Appl. Chem. 2008, 80, 59–84; https://doi.org/10.1351/pac200880010059.Search in Google Scholar

27. MNova (version 14.3); Mestrelab Research, S.L.: Santiago de Compostela (Spain), 2022.Search in Google Scholar

28. Sheldrick, G. M. Sadabs (version 2016/2); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar

29. Apex-IV (version 4.0), Data Reduction and Frame Integration Program for the CCD Area-Detector System, Bruker AXS Inc.: Madison, Wisconsin (USA), 2021.Search in Google Scholar

30. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

31. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

33. DIAMOND (version 4.65), Crystal and Molecular Structure Visualization; Crystal Impact – Dr. H. Putz & Dr. K. Brandenburg GbR: Bonn (Germany), 2023.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0095).


Received: 2023-11-01
Accepted: 2023-11-06
Published Online: 2024-01-12
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0095/html
Scroll to top button