Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2024

The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy

  • Thomas Harmening , Samir F. Matar , Constanze Fehse , Steffen Klenner , Hellmut Eckert , Jutta Kösters , Wilma Pröbsting , Stefan Seidel and Rainer Pöttgen EMAIL logo

Abstract

The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2)  mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).


Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.



Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald and Dr. R.-D. Hoffmann for the intensity data collections and Dr. F. Eustermann for the EDX analyses.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020; chapter 3.6; pp. 299–321.10.1515/9783110654929-021Search in Google Scholar

2. Eckert, H. Solid state NMR of the rare earth nuclei: applications in solid-state inorganic chemistry. In Comprehensive Inorganic Chemistry III; Bryce, D. L., Reedijk, J., Poeppelmeier, K. R., Eds. Elsevier: Amsterdam, Vol. 9, 2023, chapter 8; pp. 178–208.10.1016/B978-0-12-823144-9.00164-3Search in Google Scholar

3. Thompson, A. R., Oldfield, E. J. Chem. Soc., Chem. Commun. 1987, 27–29; https://doi.org/10.1039/c39870000027.Search in Google Scholar

4. Rossini, A. J., Schurko, R. W. J. Am. Chem. Soc. 2006, 128, 10391–10402; https://doi.org/10.1021/ja060477w.Search in Google Scholar PubMed

5. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Search in Google Scholar

6. Alba, M. D., Chain, P., Florian, P., Massiot, D. J. Phys. Chem. C 2010, 114, 12125–12132; https://doi.org/10.1021/jp1036525.Search in Google Scholar

7. Bräuniger, T., Hofmann, A. J., Moudrakovski, I. L., Hoch, C., Schnick, W. Solid State Sci. 2016, 51, 1–7; https://doi.org/10.1016/j.solidstatesciences.2015.11.002.Search in Google Scholar

8. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Search in Google Scholar

9. Heying, B., Haverkamp, S., Rodewald, U.Ch., Eckert, H., Peter, S. C., Pöttgen, R. Solid State Sci. 2015, 39, 15–22; https://doi.org/10.1016/j.solidstatesciences.2014.11.001.Search in Google Scholar

10. Harmening, T., Sebastian, C. P., Zhang, L., Fehse, C., Eckert, H., Pöttgen, R. Solid State Sci. 2008, 10, 1395–1400; https://doi.org/10.1016/j.solidstatesciences.2008.02.002.Search in Google Scholar

11. Harmening, T., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 900–906; https://doi.org/10.1016/j.solidstatesciences.2008.12.007.Search in Google Scholar

12. Harmening, T., van Wüllen, L., Eckert, H., Rodewald, U.Ch., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 972–976; https://doi.org/10.1002/zaac.201000003.Search in Google Scholar

13. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771–779; https://doi.org/10.1021/ic061691o.Search in Google Scholar

14. Yarmolyuk, Y. P., Sikiritsa, M., Aksel’rud, L. G., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1982, 27, 652–653.10.1037/021411Search in Google Scholar

15. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, (release 2022/23); ASM International®: Materials Park: Ohio (USA), 2022.Search in Google Scholar

16. Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1983, 18, 1529–1535; https://doi.org/10.1016/0025-5408(83)90194-0.Search in Google Scholar

17. Parthé, E., Chabot, B. Crystal structures and crystal chemistry of ternary rare earth transition metal borides, silicides and homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland: Amsterdam, Vol. 6, chapter 48, 1984; pp. 113–334.10.1016/S0168-1273(84)06005-0Search in Google Scholar

18. Kotur, B. Y., Kravs, A. B., Andrusyak, R. I. Russ. Metall. 1988, 6, 192–195.Search in Google Scholar

19. Venturini, G., Méot-Meyer, M., Roques, B. J. Less-Common Met. 1985, 107, L5–L7; https://doi.org/10.1016/0022-5088(85)90095-5.Search in Google Scholar

20. Andrusyak, R. I., Kotur, B. Y. Russ. Metall. 1991, 4, 204–208.Search in Google Scholar

21. Kotur, B. Y., Andrusyak, R. I. Inorg. Mater. 1991, 27, 1207–1212.Search in Google Scholar

22. Skolozdra, R. V., Kotur, B. Y., Andrusyak, R. I., Gorelenko, Yu. K. Inorg. Mater. 1991, 27, 1371–1374.Search in Google Scholar

23. Kotur, B. Y. J. Alloys Compd. 1995, 219, 88–92; https://doi.org/10.1016/0925-8388(94)05013-9.Search in Google Scholar

24. Kotur, B. Y., Bodak, O. I., Stepien-Damm, J. Z. Kristallogr. 1996, 211, 117.10.1524/zkri.1996.211.2.117Search in Google Scholar

25. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

26. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

28. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

29. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

30. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

31. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed

32. Kresse, G., Joubert, J. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

33. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed

34. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

35. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Search in Google Scholar

36. Williams, A. R., Kübler, J., Gelatt, C. D.Jr. Phys. Rev. B 1979, 19, 6094–6118; https://doi.org/10.1103/physrevb.19.6094.Search in Google Scholar

37. Eyert, V. The augmented spherical wave method–a comprehensive treatment. In Lecture Notes in Physics, 2nd ed.; Springer: Berlin, Heidelberg, Vol. 849, 2013.10.1007/978-3-642-25864-0Search in Google Scholar

38. Hoffmann, R. Angew Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Search in Google Scholar

39. Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76; https://doi.org/10.1002/mrc.984.Search in Google Scholar

40. Amoureux, J. P. F. C., Steuernagel, S. J. Magn. Reson. A 1996, 123, 116–118; https://doi.org/10.1006/jmra.1996.0221.Search in Google Scholar PubMed

41. Medek, A., Frydman, J. J. Braz. Chem. Soc. 1999, 10, 263–277.10.1590/S0103-50531999000400003Search in Google Scholar

42. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J. Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Schwarz, K. H., Ed. Vienna University of Technology: Vienna (Austria), 2001.Search in Google Scholar

43. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

44. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

45. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

46. Steinmetz, J., Venturini, G., Roques, B., Engel, N., Chabot, B., Parthé, E. Acta Crystallogr. 1982, B38, 2103–2108; https://doi.org/10.1107/s0567740882008140.Search in Google Scholar

47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

48. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

49. Gulay, N. L., Osthues, H., Amirjalayer, S., Doltsinis, N. L., Reimann, M. K., Kalychak, Ya. M., Pöttgen, R. Dalton Trans. 2022, 51, 14156–14164; https://doi.org/10.1039/d2dt02357a.Search in Google Scholar PubMed

50. Pöttgen, R., Jeitschko, W. Inorg. Chem. 1991, 30, 427–431; https://doi.org/10.1021/ic00003a013.Search in Google Scholar

51. Li, G., Fang, Q., Shi, N., Bai, W., Yang, J., Xiong, M., Ma, Z., Rong, H. Can. Mineral. 2009, 47, 1265–1274.Search in Google Scholar

52. Greenwood, N. N., Gibb, T. C. Mössbauer Spectroscopy; Chapman and Hall Ltd.: London, 1971.10.1007/978-94-009-5697-1Search in Google Scholar

53. Menil, F. J. Phys. Chem. Solids 1985, 46, 763–789; https://doi.org/10.1016/0022-3697(85)90001-0.Search in Google Scholar

54. van der Kraan, A. M., Buschow, K. H. J. Physica B 1986, 138, 55–62; https://doi.org/10.1016/0378-4363(86)90492-4.Search in Google Scholar

55. Stein, S., Block, T., Klenner, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2019, 74b, 211–219; https://doi.org/10.1515/znb-2018-0237.Search in Google Scholar

Received: 2023-08-18
Accepted: 2023-09-05
Published Online: 2024-01-12
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0068/html
Scroll to top button