Skip to main content
Log in

Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Investigating the dynamics of vegetation is an essential basis to know how to protect ecological environments and to help predict any changes in trend. Because of its fragile alpine ecosystem, the Tibetan Plateau is a particularly suitable area for studying vegetation changes and their driving factors. In this study, we present a high-resolution pollen record covering the last two centuries extracted from Gongzhu Co on the western Tibetan Plateau. Alpine steppe is the predominant vegetation type in the surrounding area throughout the past 250 years with stable vegetation composition and abundance, as revealed by pollen spectra dominated by Artemisia, Ranunculaceae, Cyperaceae, and Poaceae. Detrended canonical correspondence analysis (DCCA) of the pollen data reveals low turnover in compositional species (0.41 SD), suggesting that the vegetation in the Gongzhu catchment had no significant temporal change, despite climate change and population increases in recent decades. We additionally ran DCCA on ten other pollen records from the Tibetan Plateau with high temporal resolution (1–20 years) covering recent centuries, and the results also show that compositional species turnover (0.15–0.81 SD) is relatively low, suggesting that the vegetation stability may have prevailed across the Tibetan Plateau during recent centuries. More high-resolution pollen records and high taxonomic-resolution palaeo-vegetation records (such as sedaDNA), however, are needed to confirm the vegetation stability on the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby P G, Shotyk W, Fankhauser A (1997). Lead-210 age dating of three peat cores in the Jura mountains, Switzerland. Water Air Soil Pollut, 100: 223–231

    CAS  ADS  Google Scholar 

  • Aquino-López M A, Blaauw M, Christen J A, Sanderson N K (2018). Bayesian analysis of 210Pb dating. J Agric Biol Environ Stat, 23(3): 317–333

    MathSciNet  Google Scholar 

  • Cao X, Tian F, Herzschuh U, Ni J, Xu Q, Li W, Zhang Y, Luo M, Chen F (2022). Human activities have reduced plant diversity in eastern China over the last two millennia. Glob Chang Biol, 28: 4962–4976

    CAS  PubMed  Google Scholar 

  • Cao X, Tian F, Li F, Gaillard M J, Rudaya N, Xu Q, Herzschuh U (2019). Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim Past, 15(4): 1503–1536

    Google Scholar 

  • Cao X, Tian F, Li K, Ni J (2020). Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center

  • Cao X, Wang N, Cao Y, Liu L, Zhang Y, Hou X, Zhao W, Li Y, Tian F (2023). Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau. Quat Sci Rev, 301(1): 107916

    Google Scholar 

  • Chao A, Gotelli N J, Hsieh T C, Sander E L, Ma K H, Colwell R K, Ellison A M (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr, 84: 45e67

    Google Scholar 

  • Chen F, Zhang J, Liu J, Cao X, Hou J, Zhu L, Xu X, Liu X, Wang M, Wu D, Huang X, Zeng T, Zhang S, Huang W, Zhang X, Yang K (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review. Quat Sci Rev, 243: 106444

    Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol, 19(10): 2940–2955

    ADS  Google Scholar 

  • Chen J, Chi Y, Zhou W, Wang Y, Zhuang J, Zhao N, Ding J, Song J, Zhou L (2021). Quantifying the dimensionalities and drivers of ecosystem stability at global scale. J Geophys Res Biogeosci, 126(4): e2020JG006041

    ADS  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988). Quantitative analysis of radiocaesium retention in soils. Nature, 335(6187): 247–249

    CAS  ADS  Google Scholar 

  • Cui A, Lu H, Liu X, Shen C, Xu D, Xu B, Wu, N (2021). Tibetan Plateau precipitation modulated by the periodically coupled westerlies and Asian Monsoon. Geophys Res Lett, 48: e2020GL091543

    ADS  Google Scholar 

  • Fægri K, Iversen J (1989). Textbook of Pollen Analysis, 4th edition. London: John Wiley and Sons

    Google Scholar 

  • Felde V A, Flantua S G A, Jenks C R, Benito B M, de Beaulieu J L, Kuneš P, Magri D, Nalepka D, Risebrobakken B, ter Braak C J F, Allen J R M, Granoszewski W, Helmens K F, Huntley B, Kondratien, O., Kalniņa L, Kupryjanowicz M, Malkiewicz M, Milner A M, Nita M, Noryśkiewicz B, Pidek I A, Reille M, Salonen J S, Šeirienė V, Winter H, Tzedakis P C, Birks H J B (2020). Compositional turnover and variation in Eemian pollen sequences in Europe. Veg Hist Archaeobot, 29: 101e109

    Google Scholar 

  • Gao S P, Wang J B, Xu B Q, Zhang X L (2021). Application and problems of 210Pb and 137Cs dating techniques in lake sediments. J Lake Sci, 33(2): 622–631 (in Chinese)

    CAS  Google Scholar 

  • Grimm E C (2004). TGview Version 2.0.2. Springfield: Illinois State Museum

    Google Scholar 

  • Han Y, Liu H, Zhou L, Hao Q, Cheng Y (2020). Postglacial evolution of forest and grassland in southeastern Gobi (northern China). Quat Sci Rev, 248: 106611

    Google Scholar 

  • Herzschuh U (2007). Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. J Biogeogr, 34(7): 1265–1273

    Google Scholar 

  • Herzschuh U, Winter K, Wünnemann B, Li S (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int, 154–155: 113–121

    Google Scholar 

  • Hill M O (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2): 427–432

    MathSciNet  Google Scholar 

  • Hill M O, Gauch H G Jr (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42(1–3): 47–58

    Google Scholar 

  • Hobbs W O, Telford R J, Birks H J B, Saros J E, Hazewinkel R R, Perren B B, Saulnier-Talbot E, Wolfe A P (2010). Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS One, 5(4): e10026

    PubMed  PubMed Central  ADS  Google Scholar 

  • Holling C S (1973). Resilience and stability of ecological systems. Annu Rev Ecol Syst, 4(1): 1–23

    Google Scholar 

  • Hsieh T C, Ma K H, Chao A (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol, 7: 1451e1456

    Google Scholar 

  • Jackson S T, Blois J L (2015). Community ecology in a changing environment: perspectives from the Quaternary. Proc Natl Acad Sci USA, 112(16): 4915–4921

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Jin Y, Wang H, Wei L, Hou Y, Hu J, Wu K, Xia H, Xia J, Zhou B, Li K, Ni J (2022). A plot-based dataset of plant community on the Qingzang Plateau. Acta Phytoecol Sin, 46(7): 846–854

    Google Scholar 

  • Jost L (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10): 2427–2439

    PubMed  Google Scholar 

  • Li K, Liu X, Wang Y, Herzschuh U, Ni J, Liao M, Xiao X (2017). Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole. Quat Sci Rev, 177: 235–245

    ADS  Google Scholar 

  • Li M, Wu J S, Feng Y F, Niu B, He Y T, Zhang X Z (2021). Climate variability rather than livestock grazing dominates changes in Alpine Grassland productivity across Tibet. Front Ecol Evol, 9: 631024

    ADS  Google Scholar 

  • Liu L, Hou X, Yu X, Wang N, Zhang Y, Cao X (2022). Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau. Holocene, 32(6): 543–553

    ADS  Google Scholar 

  • Lü X, Paudayal K N, Uhl D, Zhu L, Yao T, Mosbrugger V (2020). Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region. J Geophys Res Atmos, 125: e2020JD033405

    ADS  Google Scholar 

  • Luly J G (1997). Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Rev Palaeobot Palynol, 97(3–4): 301–318

    Google Scholar 

  • Ma Q, Zhu L, Lü X, Wang J, Ju J, Kasper T, Daut G, Haberzettl T (2019). Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Global Planet Change, 174: 16–25

    ADS  Google Scholar 

  • Ma Q, Zhu L, Lu X, Wang Y, Guo Y, Wang J, Ju J, Peng P, Tang L (2017). Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau. Boreas, 46(2): 242–253

    Google Scholar 

  • Maher L J Jr (1981). Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Palaeobot Palynol, 32(2–3): 153–191

    Google Scholar 

  • Miehe G, Bach K, Miehe S, Kluge J, Yang Y P, Duo L, Co S, Wesche K (2011a). Alpine steppe plant communities of the Tibetan highlands. Appl Veg Sci, 14(4): 547–560

    Google Scholar 

  • Miehe G, Miehe S, Bach K, Kluge J, Wesche K, Yang Y, Liu J (2011b). Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tiber? Quat Res, 76(2): 243–252

    Google Scholar 

  • Miehe G, Schleuss P M, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T, Graf H F, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai Z, Lehnert L, Leuschner C, Li X, Liu J, Liu S, Ma Y, Miehe S, Mosbrugger V, Noltie H J, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghöfer S, Xu X, Yang Y, Zhang S, Opgenoorth L, Wesche K (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands — Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ, 648: 754–771

    CAS  PubMed  ADS  Google Scholar 

  • Oksanen J, Simpson G, Blanchet F G, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022) vegan: Community Ecology Package, version 2.6∼∼4

  • Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer E A, Ganesanandamoorthy P, Garnier A, Griffiths J I, Greene S, Horgan K, Massie T M, Mächler E, Palamara G M, Seymour M, Petchey O L (2018). Biodiversity increases and decreases ecosystem stability. Nature, 563(7729): 109–112

    CAS  PubMed  ADS  Google Scholar 

  • Pennington W (1979). The origin of pollen sediments: an enclosed lake compared with one receiving inflow streams. New Phytol, 83: 76–86

    Google Scholar 

  • Piao S, Zhang X, Wang T, Liang E, Wang S, Zhu J, Niu B (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Sci Bull, 64(27): 2842–2855

    Google Scholar 

  • Prentice I C (1980). Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol, 31: 71–104

    Google Scholar 

  • Qiu J (2008). China: the third pole. Nature, 454: 393e396

    Google Scholar 

  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna: Austria

    Google Scholar 

  • Radchuk V, Laender F, Cabral J S, Boulangeat I, Crawford M, Bohn F, Raedt J, Scherer C, Svenning J C, Thonicke K, Schurr F M, Grimm V, Kramer-Schadt S (2019). The dimensionality of stability depends on disturbance type. Ecol Lett, 22(4): 674–684

    PubMed  Google Scholar 

  • Rudaya N, Krivonogov S, Slowinski M, Cao X, Zhilich S (2020). Postglacial history of the Steppe Altai: climate, fire and plant diversity. Quat Sci Rev, 249: 106616

    Google Scholar 

  • Sano M, Ramesh R, Sheshshayee M S, Sukumar R (2012). Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene, 22(7): 809–817

    ADS  Google Scholar 

  • Shen M G, Piao S L, Dorji T, Liu Q, Cong N, Chen X C, An S, Wang S P, Wang T, Zhang G X (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci Rev, 2(4): 454–467

    Google Scholar 

  • Smol J P, Wolfe A P, Birks H J B, Douglas M S, Jones V J, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks S J, Fallu M A, Hughes M, Keatley B E, Laing T E, Michelutti N, Nazarova L, Nyman M, Paterson A M, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA, 102(12): 4397–4402

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sugita S (1993). A model of pollen source area for an entire lake surface. Quat Res, 39(2): 239–244

    Google Scholar 

  • Sugita S (1994). Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol, 82(4): 881–897

    MathSciNet  Google Scholar 

  • Sun A, Yang Y, Wu H, Ran M (2020). Climate change on the northeastern Tibetan Plateau during the past ∼600 years inferred from peat pollen records. Rev Palaeobot Palynol, 276: 104194

    Google Scholar 

  • Tang L Y, Mao L M, Shu J W, Li C H, Shen C M, Zhou Z Z (2016). An Illustrated Handbook of Quaternary Pollen and Spores in China. Beijing: Science Press

    Google Scholar 

  • Tarasov P, Bezrukova E, Karabanov E, Nakagawa T, Wagner M, Kulagina N, Letunova P, Abzaeva A, Granoszewski W, Riedel F (2007). Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr Palaeoclimatol Palaeoecol, 252: 440–457

    Google Scholar 

  • ter Braak C J F, Smilauer P (2012). CANOCO Reference Manual and User’s Guide: Software for Ordination. Version 5. Microcomputer Power Ithaca, New York

  • ter Braak C J, Verdonschot P F (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci, 57: 255–289

    Google Scholar 

  • ter Braak C J, Prentice I C (2004). A theory of gradient analysis. Adv Ecol Res, 34: 235–282

    Google Scholar 

  • Tian F, Herzschuh U, Mischke S, Schlütz F (2014). What drives the recent intensified vegetation degradation in Mongolia-Climate change or human activity? Holocene, 24(10): 1206–1215

    ADS  Google Scholar 

  • Wang F X, Qian N F, Zhang Y L, Yang H Q (1995). Pollen Flora of China. Beijing: Science Press (in Chinese)

    Google Scholar 

  • Wang J, Huang X, Zhang J, Xiang L, Xiao Y, Fontana L, Ren X, Wang Z (2020). Pollen record of humidity changes in the arid western Qilian mountains over the past 300 years and Comparison with tree-ring reconstructions. Front Earth Sci (Lausanne), 8: 562426

    Google Scholar 

  • Wang N, Liu L, Zhang Y, Cao X (2022). A modern pollen data set for the forest-meadow-steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction. Boreas, 51(4): 847–858

    Google Scholar 

  • Wang P, Lassoie J P, Morreale S J, Dong S (2015). A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangeland J, 37(1): 1–9

    Google Scholar 

  • Wang Y B, Herzschuh U (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol, 168(1): 31–40

    Google Scholar 

  • Wang Y B, Herzschuh U, Shumilovskikh L S, Mischke S, Birks H J B, Wischnewski J, Böhner J, Schlütz F, Lehmkuhl F, Diekmann B, Wünnemann B, Zhang C (2014). Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum–extending the concept of pollen source area to pollen-based climate reconstructions from large lakes. Clim Past, 10(1): 21–39

    Google Scholar 

  • Wang Y, Heberling G, Görzen E, Miehe G, Seeber E, Wesche K (2017). Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl Veg Sci, 20(3): 327–339

    Google Scholar 

  • Wilmshurst J, McGlone S (2005). Origin of pollen and spores in surface lake sediment: comparison of modern palynomorph assemblages in moss cushions, surface soil and surface lake sediment. Rev Palaeobot Palynol, 136(1–2): 1–15

    Google Scholar 

  • Wischnewski J, Herzschuh U, Ruhland K, Brauning A, Mischke S, Smol J, Wang L (2014). Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data. J Paleolimnol, 51(2): 287–302

    Google Scholar 

  • Wischnewski J, Kramer A, Kong Z, Mackay A, Simpson G, Mischke S, Herzschuh U (2011). Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries. Glob Change Biol, 17(11): 3376–3391

    ADS  Google Scholar 

  • Xu Q, Tian F, Bunting M J, Li Y, Ding W, Cao X, He Z (2012). Pollen source area of lake with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China. Quat Sci Rev, 37: 81–91

    ADS  Google Scholar 

  • Xu Q, Zhang S (2013). Advances in pollen source area. Adv Earth Sci, 28(9): 968–975 (in Chinese)

    Google Scholar 

  • Zhang Y, Li Y, Liu L, Wang N, Cao X (2022). No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades. Palaeogeogr Palaeoclimatol Palaeoecol, 589: 110843

    Google Scholar 

  • Zhao Y, Herzschuh U (2009). Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, northeastern Tibetan Plateau. Veg Hist Archaeobot, 18(3): 245–260

    Google Scholar 

  • Zhao Y, Yu Z, Chen F, Liu X, Ito E (2008). Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Global Planet Change, 62(1–2): 107–114

    ADS  Google Scholar 

  • Zhao Y, Yu Z, Liu X, Zhao C, Chen F, Zhang K (2010). Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau. Quat Res, 73(1): 59–69

    CAS  Google Scholar 

  • Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep, 5(1): 13318

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Center for Tibetan Plateau Earth System (BSCTPES, NSFC project No. 41988101), and CAS Pioneer Hundred Talents Program (Xianyong Cao). Cathy Jenks provided help with language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Cao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, N., Liu, L. et al. Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence. Front. Earth Sci. 17, 1049–1058 (2023). https://doi.org/10.1007/s11707-023-1090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-023-1090-x

Keywords

Navigation