Skip to main content
Log in

The size effect of the tetragonal quantum dot on the self-polarization under the spatial electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the effect of the spatial electric field on the hydrogenic impurity self-polarization and binding energy in a GaAs/AlAs tetragonal quantum dot are calculated by the variational method based on the effective mass approximation. We have shown that the self-polarization and binding energy of a hydrogenic impurity in a tetragonal quantum dot depends strongly on the \(\theta\) angle of the spatial electric field, the size effect (Lz/L ratio (M)), the volume of the dot, and impurity position. Furthermore, we define the angle \({\theta }_{max}\), which aligns the spatial electric field vector with the position vector of the hydrogenic impurity on the diagonal axis. It has been noted that self-polarization reaches its peak at this particular angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A L Vartanian, A L Asatryan, A A Kirakosyan and K A Vardanyan Phys. E 106 1 (2019)

    Article  Google Scholar 

  2. E B Al, E Kasapoglu, S Sakiroglu, C A Duque and I Sokmen J. Mol. Struct. 1157 288 (2018)

    Article  ADS  Google Scholar 

  3. M R Fulla, Y A Suaza and J H Marin Phys. Status Solidi B 252 678 (2015)

    Article  ADS  Google Scholar 

  4. M Hu, H Wang, Q Gong and S Wang Eur. Phys. J. B 91 19 (2018)

    Article  ADS  Google Scholar 

  5. I Erdogan, O Akankan and H Akbas Phys. E 42 136 (2009)

    Article  Google Scholar 

  6. E Aciksoz, O Bayrak and A Soylu Chin. Phys. B 25 100302 (2016)

    Article  ADS  Google Scholar 

  7. G Rezaei, S Mousavi and E Sadeghi Phys. B 407 2637 (2012)

    Article  ADS  Google Scholar 

  8. O Akankan, I Erdogan and H Akbas Phys. E 35 217 (2006)

    Article  Google Scholar 

  9. S A A Kohl, R L Restrepo, M E Mora-Ramos and C A Duque Phys. Status Solidi B 252 786 (2015)

    Article  ADS  Google Scholar 

  10. V N Mughnetsyan, M G Barseghyan and A A Kirakosyan Superlattices Microstruct. 44 86 (2008)

    Article  ADS  Google Scholar 

  11. J H Yuan, Y Zhang, M Li, Z H Wu and H Mo Superlattices Microstruct. 74 1 (2014)

    Article  ADS  Google Scholar 

  12. E Owji, A Keshavarz and H Mokhtari Phys. B 508 7 (2017)

    Article  ADS  Google Scholar 

  13. S G Nobandegani and M J Karimi Opt. Mater. 82 75 (2018)

    Article  ADS  Google Scholar 

  14. S M Arif, A Bera, A Ghosh and M Ghosh Chem. Phys. 501 101 (2018)

    Article  Google Scholar 

  15. A Ghosh and M Ghosh Superlattices Microstruct. 104 438 (2017)

    Article  ADS  Google Scholar 

  16. E Sadeghi Phys. E 41 365 (2009)

    Article  Google Scholar 

  17. A Sivakami and M Mahendran Phys. B 405 1403 (2010)

    Article  ADS  Google Scholar 

  18. H Wu, H Wang, L Jiang, Q Gong and S Feng Phys. B 404 122 (2009)

    Article  ADS  Google Scholar 

  19. C S Yang Microelectron. J. 39 1469 (2008)

    Article  Google Scholar 

  20. C Heyn and C A Duque Scientific Rep. 10 9155 (2020)

    Article  ADS  Google Scholar 

  21. C Xue and S Deng Phys. E 43 1118 (2011)

    Article  Google Scholar 

  22. A Abramov Phys. E 67 28 (2015)

    Article  ADS  Google Scholar 

  23. H Hassanabadi and A A Rajabi Phys. Lett. A 373 679 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. A Ghosh, A Bera and M Ghosh Chem. Phys. Lett. 678 119 (2017)

    Article  ADS  Google Scholar 

  25. K Rahmani, Y Chrafih, S M’Zred, S Janati, I Zorkani, A Jorio and A Mmadi J. Phys.: Conf. Ser. 984 012001 (2018)

    Google Scholar 

  26. C M Duque, M G Barseghyan and C A Duque Eur. Phys. J. B 73 309 (2010)

    Article  ADS  Google Scholar 

  27. B Vaseghi, G Rezaei, V Azizi and F Taghizadeh Phys. E 43 1080 (2011)

    Article  Google Scholar 

  28. A Sali, J Kharbach, A Rezzouk and M O Jamil Superlattices Microstruct. 104 93 (2017)

    Article  ADS  Google Scholar 

  29. S Sarkar, S Sarkar and C Bose Physica B: Conden. Matt. 541 75 (2018)

    Article  ADS  Google Scholar 

  30. A I Mese, E Cicek, I Erdogan, O Akankan and H Akbas Indian J Phys. 91 263 (2017)

    Article  ADS  Google Scholar 

  31. R Arraoui, A Sali, A Ed-Dahmouny, K El-Bakkari, M Jaouane and A Fakkahi Eur. Phys. J. Plus 137 979 (2022)

    Article  Google Scholar 

  32. O Akankan, I Erdogan, A I Mese, E Cicek and H Akbas Indian J. Phys. 95 1341 (2021)

    Article  ADS  Google Scholar 

  33. A Fakkahi, A Sali, M Jaouane and R Arraoui Appl. Phys. A 127 908 (2021)

    Article  ADS  Google Scholar 

  34. R Khordad, H Bahramiyan and S A Mohammadi Chin. J. Phys. 54 20 (2016)

    Article  Google Scholar 

  35. K El Messaoudi, A Zounoubi, I Zorkani and A Jorio Phys. Stat. Sol. (b) 233 270 (2002)

    Article  ADS  Google Scholar 

  36. I Erdogan, O Akankan and H Akbas Superlattices Microstruct. 59 13 (2013)

    Article  ADS  Google Scholar 

  37. O Akankan Superlattices Microstruct. 55 45 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EC: investigation and analyzed the data, writing–review & editing. AIM: critical review of the manuscript and data, writing–original draft preparation. OA: software, writing–original draft preparation. HA: supervision.

Corresponding author

Correspondence to E. Cicek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Retired at present: H. Akbas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicek, E., Mese, A.I., Akankan, O. et al. The size effect of the tetragonal quantum dot on the self-polarization under the spatial electric field. Indian J Phys (2024). https://doi.org/10.1007/s12648-023-03017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03017-y

Keywords

Navigation