Skip to main content
Log in

A Norm-Minimization Algorithm for Solving the Lost-in-Space Problem with XNAV

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

An algorithm is presented for solving the lost-in-space problem using simultaneous observations of X-ray pulsars. Using a norm-minimization-based approach, the algorithm extends a previous banded-error intersection model to 3-dimensional space. Higher-fidelity X-ray pulsar signal models are considered, including the parallax effect, Shapiro delay, time dilation, and higher-order pulsar frequency models. The feasibility of solving the lost-in-space problem using X-ray pulsar navigation is revisited with the improved models and prior knowledge requirements are discussed. Monte Carlo simulation techniques are used to establish upper bounds on uncertainty and determine the accuracy of the algorithm. Results indicate that it is necessary to account for the parallax effect, time dilation, and higher-order pulsar frequency models in order to successfully determine the position of the spacecraft in a lost-in-space scenario. In a heliocentric case study, the algorithm uniquely identified a candidate spacecraft position within a spheroid search domain up to 10\(\times\)10\(\times\)0.01 AU\(^3\) in size by simultaneously observing eight to nine pulsars. The maximum search domain size can be increased by observing additional pulsars, which may allow the lost-in-space problem to be solved anywhere within the Solar System. The median position error of the algorithm is on the order of 15 km. Results further indicate that choosing lower-frequency pulsars increases the maximum search domain size at the expense of increased position error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Allan, D.: Millisecond pulsar rivals best atomic clock stability. In: 41st Annual Symposium on Frequency Control, pp. 2–11 (1987). https://doi.org/10.1109/freq.1987.200994. IEEE

  2. Winternitz, L.M., Hassouneh, M.A., Mitchell, J.W., Valdez, J.E., Price, S.R., Semper, S.R., Wayne, H.Y., Ray, P.S., Wood, K.S., Arzoumanian, Z., et al.: X-ray pulsar navigation algorithms and testbed for sextant. In: 2015 IEEE Aerospace Conference, pp. 1–14 (2015). https://doi.org/10.1109/AERO.2015.7118936. IEEE

  3. Graven, P., Collins, J., Sheikh, S., Hanson, J., Ray, P., Wood, K.: Xnav for deep space navigation. In: 31st Annual AAS Guidance and Control Conference (2008). AAS San Diego. AAS 08-054. https://www.asterlabs.com/publications/2008/Graven_et_al,_AAS_31_GCC_February_2008.pdf

  4. Winternitz, L.M., Mitchell, J.W., Hassouneh, M.A., Valdez, J.E., Price, S.R., Semper, S.R., Wayne, H.Y., Ray, P.S., Wood, K.S., Arzoumanian, Z., et al.: Sextant x-ray pulsar navigation demonstration: Flight system and test results. In: 2016 IEEE Aerospace Conference (2016). https://doi.org/10.1109/AERO.2016.7500838. IEEE

  5. Tanygin, S.: Closed-form solution for lost-in-space visual navigation problem. J. Guid. Control Dyn. 37(6), 1754–1766 (2014). https://doi.org/10.2514/1.G000529

    Article  ADS  Google Scholar 

  6. Adams, V.H., Peck, M.A.: Lost in space and time. In: AIAA Guidance, Navigation, and Control Conference, p. 1030 (2017). https://doi.org/10.2514/6.2017-1030

  7. Dahir, A.R.: Lost in space: Autonomous deep space navigation. PhD thesis, University of Colorado at Boulder (2020). https://www.proquest.com/dissertations-theses/lost-space-autonomous-deep-navigation/docview/2408808776/se-2

  8. Hollenberg, C.L., Christian, J.A.: Geometric solutions for problems in velocity-based orbit determination. J. Astronaut. Sci. 67(1), 188–224 (2020). https://doi.org/10.1007/s40295-019-00170-7

    Article  ADS  Google Scholar 

  9. Hou, L., Lohan, K., Putnam, Z.R.: Comparison and error modeling of velocity-based initial orbit determination algorithms. In: AAS/AIAA Space Flight Mechanics Meeting, Virtual (2021). AAS 21-280

  10. Sala Álvarez, J., Urruela Planas, A., Villares Piera, N.J., Estalella, R., Paredes, J.M.: Feasibility study for a spacecraft navigation system relying on pulsar timing information. Technical report, ESA Ariadna Study (2004). http://hdl.handle.net/2117/11514

  11. Sheikh, S.I.: The use of variable celestial x-ray sources for spacecraft navigation. PhD thesis, University of Maryland (2005). https://drum.lib.umd.edu/handle/1903/2856 Accessed 2021-10-11

  12. Golshan, A.R., Sheikh, S.I.: On pulse phase estimation and tracking of variable celestial x-ray sources. In: Proceedings of the 63rd Annual Meeting of The Institute of Navigation (2007), Cambridge, MA, pp. 413–422. https://www.asterlabs.com/publications/2007/Golshan_ &_Sheikh,_ION_63_AM_April_2007.pdf

  13. Anderson, K.D.: Phase tracking methods for x-ray pulsar-based spacecraft navigation. PhD thesis, University of Maryland (2021). https://doi.org/10.13016/zg56-nipg

  14. Sheikh, S.I., Golshan, A.R., Pines, D.J.: Absolute and relative position determination using variable celestial x-ray sources. In: 30th Annual AAS Guidance and Control Conference, pp. 855–874 (2007). American Astronautical Society Breckenridge, Colorado. https://www.asterlabs.com/publications/2007/Sheikh_Golshan_ &_Pines,_AAS_GCC_February_2007.pdf

  15. Huang, L., Lin, Q., Zhang, X., Shuai, P.: Fast ambiguity resolution for pulsar-based navigation by means of hypothesis testing. IEEE Trans. Aerosp. Electron. Syst. 53(1), 137–147 (2017). https://doi.org/10.1109/TAES.2017.2649698

    Article  ADS  Google Scholar 

  16. Lohan, K.: Methodology for state determination without prior information using x-ray pulsar navigation systems. PhD thesis, University of Illinois at Urbana-Champaign (2021). https://hdl.handle.net/2142/113068

  17. Sheikh, S.I., Hellings, R.W., Matzner, R.A.: High-order pulsar timing for navigation. In: Proceedings of the 63rd Annual Meeting of The Institute of Navigation, pp. 432–443 (2007). https://www.asterlabs.com/publications/2007/Sheikh_Hellings_Matzner,_ION_63_AM_April_2007.pdf

  18. Huygens, C.: Oeuvres Complètes de Christiaan Huygens vol. 8. Martinus Nijhoff, The Hague (1899). https://doi.org/10.5962/bhl.title.21031

  19. Edwards, R.T., Hobbs, G., Manchester, R.: Tempo2, a new pulsar timing package - ii. The timing model and precision estimates. Mon. Notices R. Astron. Soc. 372(4), 1549–1574 (2006). https://doi.org/10.1111/j.1365-2966.2006.10870.x

    Article  ADS  Google Scholar 

  20. Backer, D., Hellings, R.: Pulsar timing and general relativity. Ann. Rev. Astron. Astrophys. 24(1), 537–575 (1986). https://doi.org/10.1146/annurev.aa.24.090186.002541

    Article  ADS  Google Scholar 

  21. Desvignes, G., Caballero, R., Lentati, L., Verbiest, J., Champion, D., Stappers, B., Janssen, G., Lazarus, P., Osłowski, S., Babak, S., et al.: High-precision timing of 42 millisecond pulsars with the European pulsar timing array. Mon. Notices R. Astron. Soc. 458(3), 3341–3380 (2016). https://doi.org/10.1093/mnras/stw483

    Article  ADS  CAS  Google Scholar 

  22. Freire, P.C., Wex, N., Esposito-Farèse, G., Verbiest, J.P., Bailes, M., Jacoby, B.A., Kramer, M., Stairs, I.H., Antoniadis, J., Janssen, G.H.: The relativistic pulsar-white dwarf binary psr j1738+ 0333–ii. The most stringent test of scalar-tensor gravity. Mon. Notices R. Astron. Soc. 423(4), 3328–3343 (2012). https://doi.org/10.1111/j.1365-2966.2012.21253.x

    Article  ADS  Google Scholar 

  23. Hobbs, G., Manchester, R., Teoh, A., Hobbs, M.: The ATNF pulsar catalog. In: Symposium-International Astronomical Union, vol. 218, pp. 139–140 (2004). https://doi.org/10.1017/s0074180900180829. Cambridge University Press

  24. Thomas, J.: Reformulation of the relativistic conversion between coordinate time and atomic time. Astron. J. 80, 405–411 (1975). https://doi.org/10.1086/111756

    Article  ADS  Google Scholar 

  25. Moyer, T.D.: Transformation from proper time on earth to coordinate time in solar system barycentric space-time frame of reference. Celest. Mech. 23(1), 33–56 (1981). https://doi.org/10.1007/BF01228543

    Article  ADS  MathSciNet  Google Scholar 

  26. Lohan, K., Putnam, Z.: Characterization of candidate solutions for x-ray pulsar navigation. IEEE Trans. Aerosp. Electron. Syst. (2022). https://doi.org/10.1109/TAES.2022.3152684

    Article  Google Scholar 

  27. An Overview of Reference Frame and Coordinate Systems in the SPICE Context. https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf. Accessed: 2022-03-30

  28. The ABC of XTE | A Time Tutorial. https://heasarc.gsfc.nasa.gov/docs/xte/abc/time_tutorial.html. Accessed 30 Mar 2022

  29. NASA: General Mission Analysis Tool (GMAT). Version R2020a. https://sourceforge.net/projects/gmat/

  30. Anderson, K.D., Pines, D., Sheikh, S.: Investigation of x-ray pulsar signal phase tracking for spacecraft navigation. In: AIAA SCITECH 2022 Forum, p. 1589 (2022). https://doi.org/10.2514/6.2022-1589

  31. Visualize summary statistics with box plot - MATLAB boxplot. https://www.mathworks.com/help/stats/boxplot.html. Accessed 12 Jun 2022

  32. Shemar, S., Fraser, G., Heil, L., Hindley, D., Martindale, A., Molyneux, P., Pye, J., Warwick, R., Lamb, A.: Towards practical autonomous deep-space navigation using x-ray pulsar timing. Exp. Astron. 42(2), 101–138 (2016). https://doi.org/10.1007/s10686-016-9496-z

    Article  ADS  Google Scholar 

  33. Mitchell, J.W., Winternitz, L.M., Hassouneh, M.A., Price, S.R., Semper, S.R., Yu, W.H., Ray, P.S., Wolff, M.T., Kerr, M., Wood, K.S., et al.: Sextant x-ray pulsar navigation demonstration: Initial on-orbit results. In: Annual American Astronautical Society (AAS) Guidance and Control Conference 2018 (2018). https://ntrs.nasa.gov/api/citations/20180001252/downloads/20180001252.pdf

  34. Ray, P.S., Wood, K.S., Wolff, M.T.: Characterization of pulsar sources for x-ray navigation. arXiv preprint arXiv:1711.08507 (2017). https://doi.org/10.48550/arXiv.1711.08507

  35. Sun, H., Sun, X., Fang, H., Shen, L., Cong, S., Liu, Y., Li, X., Bao, W.: Building x-ray pulsar timing model without the use of radio parameters. Acta Astronaut. 143, 155–162 (2018). https://doi.org/10.1016/j.actaastro.2017.11.014

    Article  ADS  Google Scholar 

  36. Sheikh, S.I., Pines, D.J., Ray, P.S., Wood, K.S., Lovellette, M.N., Wolff, M.T.: Spacecraft navigation using x-ray pulsars. J. Guid. Control Dyn. 29(1), 49–63 (2006). https://doi.org/10.2514/1.13331

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linyi Hou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Putnam, Z.R. A Norm-Minimization Algorithm for Solving the Lost-in-Space Problem with XNAV. J Astronaut Sci 71, 6 (2024). https://doi.org/10.1007/s40295-023-00425-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00425-4

Keywords

Navigation