Skip to main content
Log in

Effect of Heating on the Generation and Properties of Platicons in High-Q Optical Microresonators

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Pumping a high-Q optical microresonator by an external laser is inevitably associated with thermal effects. They have a significant impact on the dynamics of nonlinear processes in such structures, including the generation of optical frequency combs and dissipative solitons. The generation process and the properties of bright solitons in such heated microresonators with anomalous group velocity dispersion (GVD) have been well studied, and a number of methods have been developed to minimize the effect of thermal processes. However, for dark solitons or platicons excited at normal GVD, these issues have been studied significantly less. In this work, the properties of platicons in heated microresonators are analyzed, and it is shown that in the case of “positive” thermal effects, when the direction of the thermal shift of the resonance frequencies of a microresonator coincides with the direction of the nonlinear shift, the widest high-energy platicons with the duration close to the round trip time in the resonator are stable. In the case of “negative” thermal effects, narrow low-energy platicons remain stable. Moreover, in microresonators with “negative” thermal effects, the interaction between cubic nonlinear and thermal processes can ensure the generation of platicons without special techniques required in other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).

    Article  ADS  Google Scholar 

  2. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).

    Article  ADS  Google Scholar 

  3. M. L. Gorodetskii, Optical Microresonators with a Giant Q-Factor (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  4. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).

    Article  ADS  Google Scholar 

  5. J. Ward and O. Benson, Laser Photon. Rev. 5, 553 (2011).

    Article  ADS  Google Scholar 

  6. D. V. Strekalov, C. Marquard, A. B. Matsko, et al., J. Opt. 18, 123002 (2016).

  7. G. Lin, A. Coillet, and Y. K. Chembo, Adv. Opt. Photon. 9, 828 (2017).

    Article  Google Scholar 

  8. V. Ilchenko and M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

    Google Scholar 

  9. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, et al., J. Opt. Soc. Am. B 22, 459 (2005).

    Article  ADS  Google Scholar 

  10. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).

    Article  ADS  Google Scholar 

  11. S. Diallo, G. Lin, and Y. K. Chembo, Opt. Lett. 40, 3834 (2015).

    Article  ADS  Google Scholar 

  12. A. Leshem, Z. Qi, T. F. Carruthers, et al., Phys. Rev. A 103, 013512 (2021).

  13. P. Del’Haye, A. Schliesser, O. Arcizet, et al., Nature (London, U.K.) 450 (7173), 1214 (2007).

  14. T. Herr, V. Brasch, J. D. Jost, et al., Nat. Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  15. T. J. Kippenberg, A. L. Gaeta, M. Lipson, et al., Science (Washington, DC, U. S.) 361 (6402), eaan8083 (2018).

  16. A. Pasquazi, M. Peccianti, L. Razzari, et al., Phys. Rep. 729, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Kovach, D. Chen, J. He, et al., Adv. Opt. Photon. 12, 135 (2020).

    Article  Google Scholar 

  18. A. Hermans, K. van Gasse, and B. Kuyken, APL Photon. 7, 100901 (2022).

  19. Y. Sun, J. Wu, M. Tan, et al., Adv. Opt. Photon. 15, 86 (2023).

    Article  Google Scholar 

  20. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, et al., Opt. Lett. 42, 2519 (2017).

    Article  ADS  Google Scholar 

  21. J. R. Stone, T. C. Briles, T. E. Drake, et al., Phys. Rev. Lett. 121, 063902 (2018).

  22. T. Wildi, V. Brasch, J. Liu, et al., Opt. Lett. 44, 4447 (2019).

    Article  ADS  Google Scholar 

  23. Q. Li, T. C. Briles, D. A. Westly, et al., Optica 4, 193 (2017).

    Article  ADS  Google Scholar 

  24. V. Brasch, M. Geiselmann, T. Herr, et al., Science (Washington, DC, U. S.) 351 (6271), 357 (2016).

    Article  ADS  Google Scholar 

  25. V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, et al., Opt. Express 24, 29312 (2016).

    Article  ADS  Google Scholar 

  26. X. Yi, Q.-F. Yang, K. Y. Yang, et al., Opt. Lett. 41, 2037 (2016).

    Article  ADS  Google Scholar 

  27. G. Moille, X. Lu, A. Rao, et al., Phys. Rev. Appl. 12, 034057 (2019).

  28. S. Zhang, J. M. Silver, L. Del Bino, et al., Optica 6, 206 (2019).

    Article  ADS  Google Scholar 

  29. H. Zhou, Y. Geng, W. Cui, et al., Light: Sci. Appl. 8, 50 (2019).

    Article  ADS  Google Scholar 

  30. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, et al., Opt. Express 25, 28167 (2017).

    Article  ADS  Google Scholar 

  31. N. G. Pavlov, S. Koptyaev, G. V. Lihachev et al., Nat. Photon. 12, 694 (2018).

    Article  ADS  Google Scholar 

  32. N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov, et al., Opt. Express 28, 38892 (2020).

    Article  ADS  Google Scholar 

  33. B. Shen, L. Chang, J. Liu, et al., Nature (London, U.K.) 583 (7812), 365 (2020).

  34. N. Yu. Dmitriev, A. S. Voloshin, N. M. Kondratiev, V. E. Lobanov, K. N. Min’kov, A. E. Shitikov, A. N. Danilin, E. A. Lonshakov, and I. A. Bilenko, J. Exp. Theor. Phys. 135, 9 (2022).

    Article  ADS  Google Scholar 

  35. N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, et al., Front. Phys. (2023).

  36. V. E. Lobanov, G. Lihachev, T. J. Kippenberg, et al., Opt. Express 23, 7713 (2015).

    Article  ADS  Google Scholar 

  37. C. Godey, I. V. Balakireva, A. Coillet, et al., Phys. Rev. A 89, 063814 (2014).

  38. X. Xue, P.-H. Wang, Y. Xuan, et al., Laser Photon. Rev. 11, 1600276 (2017).

  39. B. Y. Kim, Y. Okawachi, J. K. Jang, et al., Opt. Lett. 44, 4475 (2019).

    Article  ADS  Google Scholar 

  40. A. Fülöp, M. Mazur, Mikael, A. Lorences-Riesgo, et al., Nat. Commun. 9, 1598 (2018).

  41. O. B. Helgason, A. Fülöp, J. Schröder, et al., J. Opt. Soc. Am. B 36, 2013 (2019).

  42. X. Xue, Y. Xuan, P.-H. Wang, et al., Laser Photon. Rev. 9 (4), L23 (2015).

    Article  Google Scholar 

  43. S.-P. Yu, E. Lucas, J. Zang, et al., Nat. Commun. 13, 3134 (2022).

    Article  ADS  Google Scholar 

  44. V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov, et al., Phys. Rev. A 100, 013807 (2019).

  45. H. Liu, S.-W. Huang, W. Wang, et al., Photon. Res. 10, 1877 (2022).

    Article  Google Scholar 

  46. W. Jin, Q.-F. Yang, L. Chang, et al., Nat. Photon. 15, 346 (2021).

    Article  ADS  Google Scholar 

  47. G. Lihachev, W. Weng, J. Liu, et al., Nat. Commun. 13, 1771 (2022).

    Article  ADS  Google Scholar 

  48. A. E. Shitikov, A. S. Voloshin, I. K. Gorelov, E. A. Lonshakov, K. N. Min’kov, N. Yu. Dmitriev, N. M. Kondrat’ev, V. E. Lobanov, and I. A. Bilenko, J. Exp. Theor. Phys. 134, 583 (2022).

    Article  ADS  Google Scholar 

  49. A. Savchenkov and A. Matsko, J. Opt. 20, 035801 (2018).

  50. J. Lim, A. A. Savchenkov, E. Dale, et al., Nat. Commun. 8, 8 (2017).

    Article  ADS  Google Scholar 

  51. P. Parra-Rivas, E. Knobloch, D. Gomila, et al., Phys. Rev. A 93, 063839 (2016).

  52. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, et al., Opt. Express 15, 6768 (2007).

    Article  ADS  Google Scholar 

  53. L. Wu, H. Wang, Q. Yang, et al., Opt. Lett. 45, 5129 (2020).

    Article  ADS  Google Scholar 

  54. I. S. Grudinin and N. Yu, Optica 2, 221 (2015).

    Article  ADS  Google Scholar 

  55. S. Fujii and T. Tanabe, Nanophotonics 9, 1087 (2020).

    Article  Google Scholar 

  56. S.-P. Wang, T.-H. Lee, Y.-Y. Chen, et al., Micromachines 13, 454 (2022).

    Article  Google Scholar 

  57. Ch. Zhang, G. Kang, J. Wang, et al., Opt. Express 30, 44395 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

The work is supported by the Russian Science Foundation (project 22-22-00872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Lobanov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by I. Nikitin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, V.E. Effect of Heating on the Generation and Properties of Platicons in High-Q Optical Microresonators. J. Exp. Theor. Phys. 137, 603–614 (2023). https://doi.org/10.1134/S1063776123110055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123110055

Navigation