Skip to main content
Log in

Adjuvant Effects of Deleting Hypervariable Domains of FliC of Escherichia coli Nissle 1917

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Bacterial flagellin (FliC) can be used as a TLR5 ligand-like adjuvant. However, the sequences of hypervariable regions(HVR) of FliC from different bacteria vary, and their effects on adjuvants remain unclear. In this study, FliCΔ274–406 (deleting of D3 domain) and FliCΔ174–506 (deleting of D2-D3 domain) from Escherichia coli Nissle 1917 FliC (FliCEcN) were constructed and expressed in host bacteria, BL21. Purification was conducted using affinity chromatography on a Ni-NTA column, validation was done using SDS-PAGE and western blotting, the antigenicity and immunogenicity were detected using ELISA, and adjuvant effects were evaluated in Caco-2 cells and mice. The results showed that FliCEcN was mainly expressed in the bacterial supernatant, and the two truncated flagellins were expressed as inclusion bodies. Compared with FliCEcN, both FliCΔ274–406 and FliCΔ174–506 had considerable decreased antigenicity and immunogenicity. In Caco-2 cells, FliCΔ174–506 had a higher ability to promote the secretion of IL-8 than FliCEcN and FliCΔ274–406. In mice, FliCΔ174–506 showed a comparable adjuvant level to FliCEcN, while FliCΔ274–406 was less effective. Our data shows that adjuvant effects of FliCEcN with deletion of different regions of its HVR are inconsistent, and deleting its entire D2–D3 domain is better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

DATA AVAILABILITY

The datasets generated in the present study are available from the authors upon request.

REFERENCES

  1. López-Yglesias, A.H., Lu, C.C., Zhao, X., Chou, T., VandenBos, T., Strong, R.K., and Smith, K.D., FliC’s hypervariable D3 domain is required for robust anti-flagellin primary antibody responses, Immunohorizons, 2019, vol. 3, no. 9, pp. 422–432. https://doi.org/10.4049/immunohorizons.1800061

    Article  PubMed  CAS  Google Scholar 

  2. Song, L., Xiong, D., Kang, X., Jiao, Y., Zhou, X., Wu, K., Zhou, Y., Jiao, X., and Pan, Z., The optimized fusion protein HA1-2-FliCΔD2D3 promotes mixed Th1/Th2 immune responses to influenza H7N9 with low induction of systemic proinflammatory cytokines in mice, Antiviral Res., 2019, vol. 161, pp. 10–19. https://doi.org/10.1016/j.antiviral.2018.10.027

    Article  PubMed  CAS  Google Scholar 

  3. Wangkahart, E., Secombes, C.J., and Wang, T., Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture, Front. Immunol., 2019, vol. 9, p. 3054. https://doi.org/10.3389/fimmu.2018.03054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mett, V., Kurnasov, O.V., Bespalov, I.A., Molodtsov, I., Brackett, C.M., Burdelya, L.G., Purmal, A.A., Gleiberman, A.S., Toshkov, I.A., Burkhart, C.A., Kogan, Y.N., Andrianova, E.L., Gudkov, A.V., and Osterman, A.L., A deimmunized and pharmacologically optimized Toll-like receptor 5 agonist for therapeutic applications, Commun. Biol., 2021, vol. 4, no. 1, p. 466. https://doi.org/10.1038/s42003-021-01978-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. López-Gálvez, R., Fleurot, I., Chamero, P., Trapp, S., Olivier, M., Chevaleyre, C., Barc, C., Riou, M., Rossignol, C., Guillon, A., Si-Tahar, M., May, T., Barbry, P., Bähr, A., Klymiuk, N., Sirard, J.C., and Caballero, I., Airway administration of flagellin regulates the inflammatory response to Pseudomonas aeruginosa, Am. J. Respir. Cell Mol. Biol., 2021, vol. 65, no. 4, pp. 378–389. https://doi.org/10.1165/rcmb.2021-0125OC

    Article  PubMed  PubMed Central  Google Scholar 

  6. Puth, S., Verma, V., Hong, S.H., Tan, W., Lee, S.E., and Rhee, J.H., An all-in-one adjuvanted therapeutic cancer vaccine targeting dendritic cell cytosol induces long-lived tumor suppression through NLRC4 inflammasome activation, Biomaterials, 2022, vol. 286, p. 121542. https://doi.org/10.1016/j.biomaterials.2022.121542

    Article  PubMed  CAS  Google Scholar 

  7. Barkhordari, M., Bagheri, M., Irian, S., Khani, M.H., Ebrahimi, M.M., Zahmatkesh, A., and Shahsavandi, S., Comparison of flagellin and an oil-emulsion adjuvant in inactivated Newcastle disease vaccine in stimulation of immunogenic parameters, Comp. Immunol., Microbiol. Infect. Dis., 2021, vol. 75, p. 101622. https://doi.org/10.1016/j.cimid.2021.101622

    Article  PubMed  CAS  Google Scholar 

  8. Jiang, W., Shi, L., Cai, L., Wang, X., Li, J., Li, H., Liang, J., Gu, Q., Ji, G., Li, J., Liu, L., and Sun, M., A two-adjuvant multiantigen candidate vaccine induces superior protective immune responses against SARS-CoV-2 challenge, Cell Rep., 2021, vol. 37, no. 11, p. 110112. https://doi.org/10.1016/j.celrep.2021.110112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pulendran, B., S Arunachalam, P., and O’Hagan, D.T., Emerging concepts in the science of vaccine adjuvants, Nat. Rev. Drug Discovery, 2021, vol. 20, no. 6, pp. 454–475. https://doi.org/10.1038/s41573-021-00163-y

    Article  PubMed  CAS  Google Scholar 

  10. Hinkula, J., Nyström, S., Devito, C., Bråve, A., and Applequist, S.E., Long-lasting mucosal and systemic immunity against influenza A virus is significantly prolonged and protective by nasal whole influenza immunization with mucosal adjuvant N3 and DNA-plasmid expressing flagellin in aging in- and outbred mice, Vaccines (Basel), 2019, vol. 7, no. 3, p. 64. https://doi.org/10.3390/vaccines7030064

    Article  PubMed  CAS  Google Scholar 

  11. Biedma, M.E., Cayet, D., Tabareau, J., Rossi, A.H., Ivičak-Kocjan, K., Moreno, G., Errea, A., Soulard, D., Parisi, G., Jerala, R., Berguer, P., Rumbo, M., and Sirard, J.C., Recombinant flagellins with deletions in domains D1, D2, and D3: Characterization as novel immunoadjuvants, Vaccine, 2018, vol. 37, no. 4, pp. 652–663. https://doi.org/10.1016/j.vaccine.2018.12.009

    Article  PubMed  CAS  Google Scholar 

  12. Wangkahart, E., Secombes, C.J., and Wang. T, Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture, Front. Immunol., 2019, vol. 9, p. 3054. https://doi.org/10.3389/fimmu.2018.03054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Steimle, A., Menz, S., Bender, A., Ball, B., Weber, A.N.R., Hagemann, T., Lange, A., Maerz, J.K., Parusel, R., Michaelis, L., Schäfer, A., Yao, H., Löw, H.C., Beier, S., Tesfazgi Mebrhatu, M., Gronbach, K., Wagner, S., Voehringer, D., Schaller, M., Fehrenbacher, B., Autenrieth, I.B., Oelschlaeger, T.A., and Frick, J.S., Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains, PLoS Biol., 2019, vol. 17, no. 6, p. e3000334. https://doi.org/10.1371/journal.pbio.3000334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Côté-Cyr, M., Gauthier, L., Zottig, X., Bourgault, S., and Archambault, D., Recombinant Bacillus subtilis flagellin Hag is a potent immunostimulant with reduced proinflammatory properties compared to Salmonella enterica serovar Typhimurium FljB, Vaccine, 2022, vol. 40, no. 1, pp. 11–17. https://doi.org/10.1016/j.vaccine.2021.11.049

    Article  PubMed  CAS  Google Scholar 

  15. Im, J., Jeon, J.H., Cho, M.K., Woo, S.S., Kang, S.S., Yun, C.H., Lee, K., Chung, D.K., and Han, S.H., Induction of IL-8 expression by bacterial flagellin is mediated through lipid raft formation and intracellular TLR5 activation in A549 cells, Mol. Immunol., 2009, vol. 47, nos. 2–3, pp. 614–622. https://doi.org/10.1016/j.molimm.2009.09.004

    Article  PubMed  CAS  Google Scholar 

  16. Mett, V., Kurnasov, O.V., Bespalov, I.A., Molodtsov, I., Brackett, C.M., Burdelya, L.G., Purmal, A.A., Gleiberman, A.S., Toshkov, I.A., Burkhart, C.A., Kogan, Y.N., Andrianova, E.L., Gudkov, A.V., and Osterman, A.L., A deimmunized and pharmacologically optimized Toll-like receptor 5 agonist for therapeutic applications, Commun. Biol., 2021, vol. 4, no. 1, p. 466. https://doi.org/10.1038/s42003-021-01978-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nempont, C., Cayet, D., Rumbo, M., Bompard, C., Villeret, V., and Sirard, J.C., Deletion of flagellin’s hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity, J. Immunol. 2008, vol. 181, no. 3, pp. 2036–2043. https://doi.org/10.4049/jimmunol.181.3.2036

    Article  PubMed  CAS  Google Scholar 

  18. Liu, F., Yang, J., Zhang, Y., Zhou, D., Chen, Y., Gai, W., Shi, W., Li, Q., Tien, P., and Yan, H., Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy, Biochem. Biophys. Res. Commun., 2010, vol. 392, no. 4, pp. 582–587. https://doi.org/10.1016/j.bbrc.2010.01.077

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to be very thankful to the College for Veterinary Medicine, Guizhou University, China for supporting and helping to complete this research work timely. At the same time, we thank all the contributors who provided financial support for this project.

Funding

The project was supported by the National Natural Science Foundation of China (Grant no. 32102703), Guangdong Basic and Applied Basic Research Foundation (2019A1515111186), Guizhou Provincial Science and Technology Projects (Qian Ke He Basic_ZK[2023] General 105), the Plan of Science and Technology of Guizhou Province (Qian Ke He LH Zi [2017] no. 7268), the project of Introducing Talents in Guizhou University (GDRJHZ[2016]77), the Support Plan Project of Science and Technology of Guizhou Province in 2021 (Qian Ke He Support [2021 ] General 164).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ying Yang, Ming Wen, Guilan Wen; Data curation: Bingming Ou; Formal analysis: Yongjun Deng; Funding acquisition: Ying Yang, Ming Wen; Methodology: Yongjun Deng; Project administration: Ying Yang; Supervision: Ying Yang, Ming Wen, Guilan Wen; Validation: Shuang Li; Writing—original draft: Shuang Li; Writing—review and editing: Shuang Li, Ying Yang.

Corresponding author

Correspondence to Ying Yang.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Deng, Y., Ou, B. et al. Adjuvant Effects of Deleting Hypervariable Domains of FliC of Escherichia coli Nissle 1917. Mol. Genet. Microbiol. Virol. 38, 207–214 (2023). https://doi.org/10.3103/S0891416823030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823030047

Keywords:

Navigation