Skip to main content
Log in

Benefits of Using the CRISPR/Cas9 System for the Correction of Genetic Mutations

  • REVIEW
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The discovery of the CRISPR/Cas9 gene scissors technology was a breakthrough in the development of gene therapy methods and attracted the attention of the entire scientific community. This technology provides prospects for the treatment of many neurodegenerative diseases and cancers that were previously considered almost incurable. To date, the mechanisms of the development and progression of these groups of nosologies are becoming increasingly studied due to discoveries in the field of molecular biology and genetics. However, the application of the CRISPR/Cas9 technology has some limitations and difficulties that should be considered. The development of works on the creation and selection of specific gene carriers, a thorough safety assessment of modern genetic manipulations, and the integrated participation of specialists from different fields of science will be important to solve the problems associated with the use of the CRISPR/Cas9 technology and achieve the desired therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Bhaya, D., Davison, M., and Barrangou, R., CRISP-R–Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation, Annu. Rev. Genet., 2011, vol. 45, pp. 273–297. https://doi.org/10.1146/annurev-genet-110410-132430

    Article  PubMed  CAS  Google Scholar 

  2. Charpentier, E. and Marraffini, L.A., Harnessing, CRISPR–Cas9 immunity for genetic engineering, Curr. Opin. Microbiol., 2014, vol. 19, pp. 114–119. https://doi.org/10.1016/j.mib.2014.07.001

    Article  PubMed  CAS  Google Scholar 

  3. Heidenreich, M. and Zhang, F., Applications of CRISPR–Cas systems in neuroscience, Nat. Rev. Neurosci., 2016, vol. 17, no. 1, pp. 36–44. https://doi.org/10.1038/nrn.2015.2

    Article  PubMed  CAS  Google Scholar 

  4. Ishino, Y., Krupovic, M., and Forterre, P., History of CRISPR–Cas from encounter with a mysterious repeated sequence to genome editing technology, J. Bacteriol., 2018, vol. 200, no. 7, p. e00580-17. https://doi.org/10.1128/JB.00580-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Maxwell, K.L., Phages fight back: Inactivation of the CRISPR–Cas bacterial immune system by anti-CRISPR proteins, PLoS Pathog., 2016, vol. 12, no. 1, p. e1005282. https://doi.org/10.1371/journal.ppat.1005282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Amitai, G. and Sorek, R., CRISPR–Cas adaptation: Insights into the mechanism of action, Nat. Rev. Microbiol., 2016, vol. 14, no. 2, pp. 67–76. https://doi.org/10.1038/nrmicro.2015.14

    Article  PubMed  CAS  Google Scholar 

  7. Burstein, D., Harrington, L.B., Strutt, S.C., Probst, A.J., Anantharaman, K., Thomas, B.C., et al., New CRISPR–Cas systems from uncultivated microbes, Nature, 2017, vol. 542, no. 7640, pp. 237–241. https://doi.org/10.1038/nature21059

    Article  PubMed  CAS  Google Scholar 

  8. Burstein, D., Sun, C.L., Brown, C.T., Sharon, I., Anantharaman, K., Probst, A.J., et al., Major bacterial lineages are essentially devoid of CRISPR–Cas viral defence systems, Nat. Commun., 2016, vol. 7, p. 10613. https://doi.org/10.1038/ncomms10613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Huang, C.H., Lee, K.C., and Doudna, J.A., Applications of CRISPR–Cas enzymes in cancer therapeutics and detection, Trends Cancer, 2018, vol. 4, no. 7, pp. 499–512. https://doi.org/10.1016/j.trecan.2018.05.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Komor, A.C., Badran, A.H., and Liu, D.R., CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 2017, vol. 168, nos. 1–2, pp. 20–36. https://doi.org/10.1016/j.cell.2016.10.044

    Article  PubMed  CAS  Google Scholar 

  11. Koonin, E.V., Makarova, K.S., and Zhang, F., Diversity, classification and evolution of CRISPR–Cas systems, Curr. Opin. Microbiol., 2017, vol. 37, pp. 67–78. https://doi.org/10.1016/j.mib.2017.05.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Knott, G.J. and Doudna, J.A., CRISPR–Cas guides the future of genetic engineering, Science, 2018, vol. 361, no. 6405, pp. 866–869. https://doi.org/10.1126/science.aat5011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ma, H., Marti-Gutierrez, N., Park, S.W., Wu, J., Lee, Y., Suzuki, K., et al., Correction of a pathogenic gene mutation in human embryos, Nature, 2017, vol. 548, no. 7668, pp. 413–419. https://doi.org/10.1038/nature23305

    Article  PubMed  CAS  Google Scholar 

  14. Marraffini, L.A., CRISPR–Cas immunity in prokaryotes, Nature, 2015, vol. 526, no. 7571, pp. 55–61. https://doi.org/10.1038/nature15386

    Article  PubMed  CAS  Google Scholar 

  15. Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., and van der Oost, J., Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems, Science, 2016, vol. 353, no. 6299, p. aad5147. https://doi.org/10.1126/science.aad5147

    Article  PubMed  CAS  Google Scholar 

  16. Moreno, A.M. and Mali, P., Therapeutic genome engineering via CRISPR–Cas systems, Wiley Interdiscip. Rev.: Syst. Biol. Med., 2017, vol. 9, no. 4. https://doi.org/10.1002/wsbm.1380

  17. Pawluk, A., Davidson, A.R., and Maxwell, K.L., Anti-CRISPR: Discovery, mechanism and function, Nat. Rev. Microbiol., 2018, vol. 16, no. 1, pp. 12–17. https://doi.org/10.1038/nrmicro.2017.120

    Article  PubMed  CAS  Google Scholar 

  18. Rath, D., Amlinger, L., Rath, A., and Lundgren, M., The CRISPR–Cas immune system: biology, mechanisms and applications, Biochimie, 2015, vol. 117, pp. 119–128. https://doi.org/10.1016/j.biochi.2015.03.025

    Article  PubMed  CAS  Google Scholar 

  19. Sander, J.D. and Joung, J.K., CRISPR–Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 2014, vol. 32, no. 4, pp. 347–355. https://doi.org/10.1038/nbt.2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sharma, G., Sharma, A.R., Bhattacharya, M., Lee, S.S., and Chakraborty, C., CRISPR–Cas9: A preclinical and clinical perspective for the treatment of human diseases, Mol. Ther., 2021, vol. 29, no. 2, pp. 571–586. https://doi.org/10.1016/j.ymthe.2020.09.028

    Article  PubMed  CAS  Google Scholar 

  21. Mollanoori, H., Rahmati, Y., Hassani, B., Havasi Mehr, M., and Teimourian, S., Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy, Genes Dis., 2020, vol. 8, no. 2, pp. 146–156. https://doi.org/10.1016/j.gendis.2019.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pickar-Oliver, A., Gough, V., Bohning, J.D., Liu, S., Robinson-Hamm, J.N., Daniels, H., et al., Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy, Mol. Ther., 2021, vol. 29, no. 11, pp. 3243–3257. https://doi.org/10.1016/j.ymthe.2021.09.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rahman, M.U., Bilal, M., Shah, J.A., Kaushik, A., Teissedre, P.L., and Kujawska, M., CRISPR–Cas9-based technology and its relevance to gene editing in Parkinson’s disease, Pharmaceutics, 2022, vol. 14, no. 6, p. 1252. https://doi.org/10.3390/pharmaceutics14061252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Luo, J., Padhi, P., Jin, H., Anantharam, V., Zenitsky, G., Wang, Q., et al., Utilization of the CRISPR–Cas9 gene editing system to dissect neuroinflammatory and neuropharmacological mechanisms in Parkinson’s disease, J. Neuroimmune Pharmacol., 2019, vol. 14, no. 4, pp. 595–607. https://doi.org/10.1007/s11481-019-09844-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vermilyea, S.C., Babinski, A., Tran, N., To, S., Guthrie, S., Kluss, J.H., et al., In vitro CRISPR/Cas9-directed Gene Editing to Model LRRK2 G2019S Parkinson’s disease in common marmosets, Sci. Rep., 2020, vol. 10, no. 1, p. 3447. https://doi.org/10.1038/s41598-020-60273-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lu, L., Yu, X., Cai, Y., Sun, M., and Yang, H., Application of CRISPR/Cas9 in Alzheimer’s disease, Front. Neurosci., 2021, vol. 15, p. 803894. https://doi.org/10.3389/fnins.2021.803894

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang, L.K., Chao, S.P., and Hu, C.J., Clinical trials of new drugs for Alzheimer disease, J. Biomed. Sci., 2020, vol. 27, no. 1, p. 18. https://doi.org/10.1186/s12929-019-0609-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hanafy, A.S., Schoch, S., and Lamprecht, A., CRISPR/ Cas9 delivery potentials in Alzheimer’s Disease management: A mini review, Pharmaceutics, 2020, vol. 12, no. 9, p. 801. https://doi.org/10.3390/pharmaceutics12090801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bhardwaj, S., Kesari, K.K., Rachamalla, M., Mani, S., Ashraf, G.M., Jha, S.K., et al., CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics, J. Adv. Res., 2022, vol. 40, pp. 207–221. https://doi.org/10.1016/j.jare.2021.07.001

    Article  PubMed  CAS  Google Scholar 

  30. Jeong, W., Lee, H., Cho, S., and Seo, J., ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease, Mol. Cell, 2019, vol. 42, no. 11, pp. 739–746. https://doi.org/10.14348/molcells.2019.0200

    Article  CAS  Google Scholar 

  31. Sarkar, E. and Khan, A., Erratic journey of CRISPR/ Cas9 in oncology from benchwork to successful-clinical therapy, Cancer Treat. Rev. Commun., 2021, vol. 27, p. 100289. https://doi.org/10.1016/j.ctarc.2020.100289

    Article  Google Scholar 

  32. Zhan, T., Rindtorff, N., Betge, J., Ebert, M.P., and Boutros, M., CRISPR/Cas9 for cancer research and therapy, Semin. Cancer Biol., 2019, vol. 55, pp. 106–119. https://doi.org/10.1016/j.semcancer.2018.04.001

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Mulyukov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Novikova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipov, R.A., Omarov, M.A., Mulyukov, A.R. et al. Benefits of Using the CRISPR/Cas9 System for the Correction of Genetic Mutations. Mol. Genet. Microbiol. Virol. 38, 137–142 (2023). https://doi.org/10.3103/S0891416823030084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823030084

Keywords:

Navigation