Skip to main content
Log in

Directed Neuronal Differentiation of SH-SY5Y Human Neuroblastoma Cells on 2D Matrices Containing Recombinant Spidroins Modified with Cell Adhesion Peptides

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The use of efficient and inexpensive substrates (2D matrices) for cultivation and differentiation of nerve cells in vitro is important for the creation of tissue engineering constructs intended for the treatment of nervous system pathologies. Recombinant analogues of the orb-weaver spider dragline-silk proteins spidroins 1 and 2 appear promising in addressing this task. The aim of the study was to evaluate the effect of cell substrates derived from mixtures of recombinant spidroins (RS) rS1/9 and rS2/12 with hybrid proteins (HP) containing rS1/9 monomer fused with biologically active peptides on gene expression levels of key synapse-specific proteins and viability of the human neuroblastoma SH-SY5Y cell line during directed cholinergic differentiation. A two-stage scheme of directed cholinergic differentiation of SH-SY5Y cells using retinoic acid and brain-derived neurotrophic factor (BDNF) was implemented. Cell viability was assessed via MTT assay and crystal violet staining. The mRNA levels of the studied genes were assessed by real-time PCR. Directed differentiation of the SH-SY5Y cells was marked by a significant increase in the gene expression levels of synaptophysin, synapsins I and II, and the postsynaptic protein PSD-95. The highest cell viability and increased PSD-95 expression levels were observed during differentiation on a matrix consisting of RS rS1/9 and rS2/12 mixed with the RGDS peptide (present in extracellular matrix proteins) and heparin-binding peptide (HBP, laminin fragment) containing HPs. The highest efficiency during the differentiation of the SH-SY5Y cells was demonstrated by a matrix consisting of the mixture of RS rS1/9 and rS2/12 and a HP made up by RS rS1/9 monomer fused with RGDS (the ligand of integrins) and HBP (the ligand of growth factors and syndecans). Matrices consisting of RS rS2/12 alone or the mixture of rS2/12 with HP(RGDS) showed lower efficiency, although the use of the GRGGL peptide (which interacts with the neural cell adhesion molecules and is a component of RS rS1/9) led to an increase in efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Gholipourmalekabadi, M., Zhao, S., Harrison, B.S., Mozafari, M., and Seifalian, A.M., Oxygen-generating biomaterials: A new, viable paradigm for tissue engineering?, Trends Biotechnol., 2016, vol. 34, no. 12, pp. 1010–1021. https://doi.org/10.1016/j.tibtech.2016.05.012

    Article  PubMed  CAS  Google Scholar 

  2. Blackledge, T.A., Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs, J. Arachnology, 2012 vol. 40, no. 1, pp. 1–12.

    Article  Google Scholar 

  3. Debabov, V.G. and Bogush, V.G., Recombinant spidroins as the basis for new materials, ACS Biomater. Sci. Eng., 2020, vol. 6, no. 7, pp. 3745–3761. https://doi.org/10.1021/acsbiomaterials.0c00109

    Article  PubMed  CAS  Google Scholar 

  4. Rising, A., Widhe, M., Johansson, J., and Hedhammar, M., Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications, Cell. Mol. Life Sci., 2011, vol. 68, no. 2, pp. 169–184. https://doi.org/10.1007/s00018-010-0462-z

    Article  PubMed  CAS  Google Scholar 

  5. Bogush, V.G., Sokolova, O.S., Davydova, L.I., Klinov, D.V., Sidoruk, K.V., Esipova, N.G., et al., A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins, J. Neuroimmune Pharmacol., 2009, vol. 4, no. 1, pp. 17–27. https://doi.org/10.1007/s11481-008-9129-z

    Article  PubMed  Google Scholar 

  6. Jansson, R., Thatikonda, N., Lindberg, D., Rising, A., Johansson, J., Nygren, P., and Hedhammar, M., Recombinant spider silk genetically functionalized with affinity domains, Biomacromolecules, 2014, vol. 15, no. 5, pp. 1696–706. https://doi.org/10.1021/bm500114e

    Article  PubMed  CAS  Google Scholar 

  7. Matsuda, A., Kobayashi, H., Itoh, S., Kataoka, K., and Tanaka, J., Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding, Biomaterials, 2005, vol. 26, no. 15, pp. 2273–2279. https://doi.org/10.1016/j.biomaterials.2004.07.032

    Article  PubMed  CAS  Google Scholar 

  8. Mauri, E., Sacchetti, A., Vicario, N., Peruzzotti-Jametti, L., Rossi, F., and Pluchino, S., Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems, Biomater. Sci., 2018, vol. 6, no. 3, pp. 501–510. https://doi.org/10.1039/c7bm01056g

    Article  PubMed  CAS  Google Scholar 

  9. Moisenovich, M.M., Silachev, D.N., Moysenovich, A.M., Arkhipova, A.Y., Shaitan, K.V., Bogush, V.G., et al., Effects of recombinant spidroin rS1/9 on brain neural progenitors after photothrombosis-induced ischemia, Front. Cell Dev. Biol., 2020, vol. 8, p. 823. https://doi.org/10.3389/fcell.2020.00823

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hirano, Y., Okuno, M., Hayashi, T., Goto, K., and Nakajima, A., Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines, J. Biomater. Sci., Polym. Ed., 1993, vol. 4, no. 3, pp. 235–243. https://doi.org/10.1163/156856293x00546

    Article  PubMed  CAS  Google Scholar 

  11. Wohlrab, S., Müller, S., Schmidt, A., Neubauer, S., Kessler, H., Leal-Egaña, A., and Scheibel, T., Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins, Biomaterials, 2012, vol. 33, no. 28, pp. 6650–6659. https://doi.org/10.1016/j.biomaterials.2012.05.069

    Article  PubMed  CAS  Google Scholar 

  12. Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.M., and Martin, G.R., Laminin–a glycoprotein from basement membranes, J. Biol. Chem., 1979, vol. 254, no. 19, pp. 9933–9937.

    Article  PubMed  CAS  Google Scholar 

  13. Ishihara, J., Ishihara, A., Fukunaga, K., Sasaki, K., White, M.J.V., Briquez, P.S., and Hubbell, J.A., Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing, Nat. Commun., 2018, vol. 9, no. 1, p. 2163. https://doi.org/10.1038/s41467-018-04525-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. An, B., Tang-Schomer, M., Huang, W., He, J., Jones, J., Lewis, R.V., and Kaplan, D.L., Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks, Biomaterials, 2015, vol. 48, pp. 137–146. https://doi.org/10.1016/j.biomaterials.2015.01.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Goldie, B.J., Barnett, M.M., and Cairns, M.J., BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation, Front. Cell. Neurosci., 2014, vol. 8, p. 325.

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Medeiros, L.M., De Bastiani, M.A., Rico, E.P., Schonhofen, P., Pfaffenseller, B., Wollenhaupt-Aguiar, B., et al., Cholinergic differentiation of human neuroblastoma, SH-SY5Y cell line and its potential use as an in vitro model for Alzheimer’s disease studies, Mol. Neurobiol., 2019, vol. 56, no. 11, pp. 7355–7367. https://doi.org/10.1007/s12035-019-1605-3

    Article  PubMed  CAS  Google Scholar 

  17. Gimenez-Cassina, A., Lim, F., and Diaz-Nido, J., Differentiation of a human neuroblastoma into neuron-like cells increases their susceptibility to transduction by herpes-viral vectors, J. Neurosci. Res., 2006, vol. 84, no. 4, pp. 755–767. https://doi.org/10.1002/jnr.20976

    Article  PubMed  CAS  Google Scholar 

  18. Revkova, V.A., Sidoruk, K.V., Kalsin, V.A., Melnikov, P.A., Konoplyannikov, M.A., Kotova, S., et al., Spidroin silk fibers with bioactive motifs of extracellular proteins for neural tissue engineering, ACS Omega, 2021, vol. 6, no. 23, pp. 15264–15273. https://doi.org/10.1021/acsomega.1c01576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Novosadova, E.V., Dolotov, O.V., Novosadova, L.V., Davydova, L.I., Sidoruk, K.V., Arsenyeva, E.L., et al., Composite coatings based on recombinant spidroins and peptides with motifs of the extracellular matrix proteins enhance neuronal differentiation of neural precursor cells derived from human induced pluripotent stem cells, Int. J. Mol. Sci., 2023, vol. 24, no. 5, p. 4871. https://doi.org/10.3390/ijms24054871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lerman, M.J., Lembong, J., Muramoto, S., Gillen, G., and Fisher, J.P., The evolution of polystyrene as a cell culture material, Tissue Eng., Part B, 2018, vol. 24, no. 5, pp. 359–372. https://doi.org/10.1089/ten.teb.2018.0056

    Article  CAS  Google Scholar 

  21. Feoktistova, M., Geserick, P., and Leverkus, M., Crystal violet assay for determining viability of cultured cells, Cold Spring Harbor Protoc., 2016, vol. 2016, no. 4, p. 087379. https://doi.org/10.1101/pdb.prot087379

    Article  Google Scholar 

  22. Vistica, D.T., Skehan, P., Scudiero, D., Monks, A., Pittman, A., and Boyd, M.R., Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production, Cancer Res., 1991, vol. 51, no. 10, pp. 2515–2520.

    PubMed  CAS  Google Scholar 

  23. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the \({{2}^{{ - \Delta \Delta {{C}_{{\text{T}}}}}}}\) Method, Methods (San Diego, CA), 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  24. Goudarzi, F., Tayebinia, H., Karimi, J., Habibitabar, E., and Khodadadi, I., Calcium: A novel and efficient inducer of differentiation of adipose-derived stem cells into neuron-like cells, J. Cell. Physiol., 2018, vol. 233, no. 11, pp. 8940–8951. https://doi.org/10.1002/jcp.26826

    Article  PubMed  CAS  Google Scholar 

  25. Imai, C., Sugai, T., Iritani, S., Niizato, K., Nakamura, R., Makifuchi, T., et al., A quantitative study on the expression of synapsin II and N-ethylmaleimide-sensitive fusion protein in schizophrenic patients, Neurosci. Lett., 2001, vol. 305, no. 3, pp. 185–188. https://doi.org/10.1016/s0304-3940(01)01844-4

    Article  PubMed  CAS  Google Scholar 

  26. Sen, A., Hongpaisan, J., Wang, D., Nelson, T.J., and Alkon, D.L., Protein Kinase C (PKC) Promotes synaptogenesis through membrane accumulation of the postsynaptic density protein PSD-95, J. Biol. Chem., 2016, vol. 291, no. 32, pp. 16462–16476. https://doi.org/10.1074/jbc.M116.730440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Artyukhov, A.S., Dashinimaev, E.B., Tsvetkov, V.O., Bolshakov, A.P., Konovalova, E.V., Kolbaev, S.N., et al., New genes for accurate normalization of qRT-PCR results in study of iPS and iPS-derived cells, Gene, 2017, vol. 626, pp. 234–240. https://doi.org/10.1016/j.gene.2017.05.045

    Article  PubMed  CAS  Google Scholar 

  28. Song, Y. and Zuo, Y., Occurrence of HHIP gene CpG island methylation in gastric cancer, Oncol. Lett., 2014, vol. 8, no. 5, pp. 2340–2344. https://doi.org/10.3892/ol.2014.2518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tojima, T. and Ito, E., Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons, Prog. Neurobiol., 2004, vol. 72, no. 3, pp. 183–193. https://doi.org/10.1016/j.pneurobio.2004.03.002

    Article  PubMed  CAS  Google Scholar 

  30. Son, G. and Han, J., Roles of mitochondria in neuronal development, BMB Rep., 2018, vol. 51, no. 11, pp. 549–556. https://doi.org/10.5483/BMBRep.2018.51.11.226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2023-324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dolotov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by E. Martynova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: BAP, biologically active peptide; ECM, extracellular matrix; RS, recombinant spidroin; HP(RGDS), RGDS tripeptide-containing hybrid protein; HP(HBP), heparin-binding peptide (HBP)-containing hybrid protein; HB(GRGGL), GRGGL pentapeptide-containing hybrid protein; BDNF, brain-derived neurotrophic factor; CV, crystal violet; Ret, retinoic acid.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurko, O.D., Davydova, L.I., Sidoruk, K. et al. Directed Neuronal Differentiation of SH-SY5Y Human Neuroblastoma Cells on 2D Matrices Containing Recombinant Spidroins Modified with Cell Adhesion Peptides. Mol. Genet. Microbiol. Virol. 38, 150–157 (2023). https://doi.org/10.3103/S0891416823030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823030035

Keywords:

Navigation