Skip to main content
Log in

Identification of Antimicrobial Resistance Genes and Drug Targets in Antibiotic-Resistant Clostridioides difficile Clinical Isolates

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Antimicrobial drug resistance has made the treatment of microbial infections quite challenging. A Gram-positive, anaerobic, spore-forming, and toxin-producing bacillus, Clostridioides difficile infection causes diarrhea-related deaths globally. The available drugs like vancomycin and metronidazole are becoming less effective against this infection. We have designed this study to identify genes responsible for antimicrobial resistance and have a better understanding of the mutations and their impact on the antimicrobial resistance activity. The Whole Genome Sequencing data of 11 C. difficile clinical isolates was analyzed to determine novel genes playing a significant role in antimicrobial resistance mechanisms. Comparative structure analysis of wild and mutant structures of proteins and their functions provided insight into the impact of the identified mutations on antimicrobial resistance. We identified 8 genes common in all the isolates that play a vital role in drug resistance through antibiotic efflux, ribosomal protection, and antibiotic inactivation. Variations in the functional domains of tetA(P), tetM, and ermB genes were found to be the most promising novel drug targets. Our findings suggest that these novel gene mutations would be beneficial in designing new drugs to combat C. difficile infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Czepiel, J., Dróżdż M, Pituch, H., Kuijper, E.J., Perucki, W., Mielimonka, A., et al., Clostridium difficile infection: Review, Eur. J. Clin. Microbiol. Infect. Dis., 2019, vol. 38, no. 7, pp. 1211–1221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Turner, N.A. and Anderson, D.J., Hospital infection control: Clostridioides difficile, Clin. Colon Rectal Surg., 2020, vol. 33, no. 02, pp. 098–108.

  3. Lim, S.C., Riley, T.V., Knight, D.R., Lim, S.C., Riley, T.V., and Knight, D.R., One health: The global challenge of Clostridium difficile infection, Microbiol. Aust., 2020, vol. 41, no. 1, pp. 23–27.

    Article  Google Scholar 

  4. Smits, W.K., Lyras, D., Lacy, D.B., Wilcox, M.H., and Kuijper, E.J., Clostridium difficile infection, Nat. Rev. Dis. Primers, 2016, vol. 2, p. 16020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haran, J.P., Ward, D.V., Bhattarai, S.K., Loew, E., Dutta, P., Higgins, A., et al., The high prevalence of Clostridioides difficile among nursing home elders associates with a dysbiotic microbiome, Gut Microbes, 2021, vol. 13, no. 1, pp. 1–15.

    Article  PubMed  Google Scholar 

  6. Lessa, F.C., Winston, L.G., and McDonald, L.C., Emerging Infections Program C. difficile Surveillance Team, Burden of Clostridium difficile infection in the United States, N. Engl. J. Med., 2015, vol. 372, no. 24, pp. 2369–2370.

    Article  PubMed  Google Scholar 

  7. Chitnis, A.S., Holzbauer, S.M., Belflower, R.M., Winston, L.G., Bamberg, W.M., Lyons, C., et al., Epidemiology of community-associated Clostridium difficile infection, 2009 Through 2011, JAMA Intern. Med., 2013, vol. 173, no. 14, pp. 1359–1367.

    Article  PubMed  Google Scholar 

  8. Cohen, B., Cohen, C.C., Løyland, B., and Larson, E.L., Transmission of health care-associated infections from roommates and prior room occupants: A systematic review, Clin. Epidemiol., 2017, vol. 9, pp. 297–310.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khanafer, N., Vanhems, P., Barbut, F., and Luxemburger, C., Factors associated with Clostridium difficile infection: A nested case-control study in a three year prospective cohort, Anaerobe, 2017, vol. 44, pp. 117–123.

    Article  PubMed  Google Scholar 

  10. Di Bella, S., Ascenzi, P., Siarakas, S., Petrosillo, N., and di Masi A., Clostridium difficile toxins A and B: Insights into pathogenic properties and extraintestinal effects, Toxins, 2016, vol. 8, no. 5, p. 134.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baines, S.D. and Wilcox, M.H., Antimicrobial resistance and reduced susceptibility in Clostridium difficile: Potential consequences for induction, treatment, and recurrence of C. difficile infection, Antibiotics, 2015, vol. 4, no. 3, pp. 267–298.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun, X. and Hirota, S.A., The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection, Mol. Immunol., 2015, vol. 63, no. 2, pp. 193–202.

    Article  PubMed  CAS  Google Scholar 

  13. Di, X., Bai, N., Zhang, X., Liu, B., Ni, W., Wang, J., et al., A meta-analysis of metronidazole and vancomycin for the treatment of Clostridium difficile infection, stratified by disease severity, Braz. J. Infect. Dis., 2015, vol. 19, no. 4, pp. 339–349.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tao, S., Chen, H., Li, N., Wang, T., and Liang, W., The spread of antibiotic resistance genes in vivo model, Can. J. Infect. Dis. Med. Microbiol., 2022, vol. 2022, p. 3348695.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heidari, H., Sedigh Ebrahim-Saraie, H., Amanati, A., Motamedifar, M., Hadi, N., and Bazargani, A., Toxin profiles and antimicrobial resistance patterns among toxigenic clinical isolates of Clostridioides (Clostridium) difficile, Iran. J. Basic Med. Sci., 2019, vol. 22, no. 7, pp. 813–819.

    PubMed  PubMed Central  Google Scholar 

  16. Huang, H., Weintraub, A., Fang, H., and Nord, C.E., Antimicrobial resistance in Clostridium difficile, Int. J. Antimicrob. Agents, 2009, vol. 34, no. 6, pp. 516–522.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, J., Zhang, X., Liu, X., Cai, L., Feng, P., Wang, X., et al., Antimicrobial susceptibility of Clostridium difficile isolates from ICU colonized patients revealed alert to ST-37 (RT 017) isolates, Diagn. Microbiol. Infect. Dis., 2017, vol. 89, no. 2, pp. 161–163.

    Article  PubMed  CAS  Google Scholar 

  18. Hunt, M., Mather, A.E., Sánchez-Busó, L., Page, A.J., Parkhill, J., Keane, J.A., et al., ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads, Microb. Genomics, 2017, vol. 3, no. 10, p. e000131.

    Article  Google Scholar 

  19. Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W., CD-HIT Suite: A web server for clustering and comparing biological sequences, Bioinformatics, 2010, vol. 26, no. 5, pp. 680–682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, H., Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences, Bioinformatics, 2016, vol. 32, no. 14, pp. 2103–2110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., et al., Versatile and open software for comparing large genomes, Genome Biol., 2004, vol. 5, no. 2, p. R12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357–359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al., The sequence Alignment/Map format and SAMtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leeds, J.A., Sachdeva, M., Mullin, S., Barnes, S.W., and Ruzin, A., In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin, J. Antimicrob. Chemother., 2014, vol. 69, no. 1, pp. 41–44.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, S., Zhou, Y., Zhao, B., Ou, X., Xia, H., Zheng, Y., et al., Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis, Front. Med., 2020, vol. 14, no. 1, pp. 51–59.

    Article  PubMed  Google Scholar 

  26. Xu, Z., Zhou, A., Wu, J., Zhou, A., Li, J., Zhang, S., et al., Transcriptional approach for decoding the mechanism of rpoC compensatory mutations for the fitness cost in rifampicin-resistant Mycobacterium tuberculosis, Front. Microbiol., 2018, vol. 9, p. 2895.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matsuo, M., Hishinuma, T., Katayama, Y., and Hiramatsu, K., A mutation of RNA polymerase β′ subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into “Slow VISA,” Antimicrob. Agents Chemother., 2015, vol. 59, no. 7, pp. 4215–4225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Elhadidy, M., Miller, W.G., Arguello, H., Álvarez-Ordóñez, A., Dierick, K., and Botteldoorn, N., Molecular epidemiology and antimicrobial resistance mechanisms of Campylobacter coli from diarrhoeal patients and broiler carcasses in Belgium, Transboundary Emerging Dis., 2019, vol. 66, no. 1, pp. 463–475.

    Article  CAS  Google Scholar 

  29. Yang, T., Pan, L., Wu, N., Wang, L., Liu, Z., Kong, Y., et al., Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying quinolone resistance, Antimicrob. Agents Chemother., 2020, vol. 64, no. 6, p. e02560-19.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria, AIMS Microbiol., 2018, vol. 4, no. 3, pp. 482–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Arenz, S., Nguyen, F., Beckmann, R., and Wilson, D.N., Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 17, pp. 5401–5406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wilson, D.N., Hauryliuk, V., Atkinson, G.C., and O’Neill, A.J., Target protection as a key antibiotic resistance mechanism, Nat. Rev. Microbiol., 2020, vol. 18, no. 11, pp. 637–648.

    Article  PubMed  CAS  Google Scholar 

  33. Dinos, G.P., The macrolide antibiotic renaissance, Br. J. Pharmacol., 2017, vol. 174, no. 18, pp. 2967–2983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

For the support and data supply authors would like to express deep thanks to department of Biotechnology, College of Science, University of Anbar.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammed Al-Rawe.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rawe, A.M., Yousif, Y.I., Al-Jomaily, O.K. et al. Identification of Antimicrobial Resistance Genes and Drug Targets in Antibiotic-Resistant Clostridioides difficile Clinical Isolates. Mol. Genet. Microbiol. Virol. 38, 197–206 (2023). https://doi.org/10.3103/S0891416823030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823030023

Keywords:

Navigation