Skip to main content
Log in

The Effect of the flhB Plasmid Gene of the Flagellar Export Component on Flagellation and Motility in Azospirillum Bacteria

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The effect was analyzed of the flhB2 gene, which is located on the AZOBR_p4 (AZOBR_p410073 gene) plasmid in Azospirillum baldaniorum Sp245 and on the ABSP7_p3 (AMK58_26270 gene) plasmid in A. brasilense Sp7 and codes for the FlhB protein, a flagellar export component that ensures flagellin assembly, flagellation, and motility in these bacteria. We used A. baldaniorum strain Sp245, its Fla Laf mutant Sp245.1063 (Sp245-flhB1::Omegon-Km), and A. brasilense Sp7. Mutants defective in the flhB2 gene were generated by site-directed mutagenesis. Bacterial morphology and motility were characterized by electron and phase-contrast microscopy. An A. baldaniorum Sp245 mutant, Sp245-flhB2::Km, was generated that had a cloned kanamycin resistance gene in the coding sequence (CDS) AZOBR_p410073. In contrast to the Fla Laf mutant Sp245-flhB1::Omegon-Km, the flhB1 chromosomal gene of which is inactivated (AZOBR_150177 gene), strain Sp245-flhB2::Km retained the synthesis of a functioning polar flagellum (Fla), but the synthesis and functioning of lateral flagella (Laf) was impaired and the movement and spreading rates of swarming cells in semiliquid agarized media were decreased. Inactivation of the AMK58_26270 plasmid gene in Sp7, which is homologous to the AZOBR_p410073 gene (97% identity), resulted in a similar Laf phenotype in the corresponding mutant. Two putative flhB genes are present in the genome of strains Sp245 and Sp7. These genes are located in the chromosome (flhB1) and on the AZOBR_p4 or ABSP7_p3 plasmid (flhB2), respectively. Expression of the flhB2 gene is required for Laf assembly. Transcription of flhB2 is regulated by a mechanosignal, the perception and generation of which is ensured by the functioning Fla, apparently with the involvement of the FlhB protein encoded by the flhB1 chromosomal gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Fukami, J., Cerezini, P., and Hungria, M., Azospirillum: Benefits that go far beyond biological nitrogen fixation, AMB Express, 2018, vol. 8, p. 73. https://doi.org/10.1186/s13568-018-0608-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hendriksen, N.B., Microbial biostimulants—the need for clarification in EU regulation, Trends Microbiol., 2022, vol. 30, no. 4, pp. 311–313. https://doi.org/10.1016/j.tim.2022.01.008

    Article  PubMed  CAS  Google Scholar 

  3. Dos Santos Ferreira, N., Sant’Anna, F.H., Reis, V.M., Ambrosini, A., Volpiano, C.G., Rothballer, M., et al., Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov., Microbiol. Soc., 2020, vol. 70, pp. 6203–6212. https://doi.org/10.1099/ijsem.0.004517

    Article  CAS  Google Scholar 

  4. Moens, S., Schloter, M., and Vanderleyden, J., Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7, J. Bacteriol., 1996, vol. 178, no. 16, pp. 5017–5019. https://doi.org/10.1128/jb.178.16.5017-5019.1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Filip’echeva, Yu., Shelud’ko, A., Prilipov, A., Telesheva, E., Mokeev, D., Burov, A., et al., Chromosomal flhB-1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella, Folia Microbiol., 2018, vol. 63, no. 2, pp. 147–153. https://doi.org/10.1007/s12223-017-0543-6

    Article  CAS  Google Scholar 

  6. Petrova, L.P., Yevstigneyeva, S.S., Borisov, I.V., Shelud’ko, A.V., Burygin, G.L., and Katsy, E.I., Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245, J. Basic Microbiol., 2020, vol. 60, pp. 613–623. https://doi.org/10.1002/jobm.201900635

    Article  PubMed  CAS  Google Scholar 

  7. Ganusova, E.E., Vo, L.T., Mukherjee, T., and Alexandre, G., Multiple CheY proteins control surface-associated, lifestyles of Azospirillum brasilense, Front. Microbiol., 2021, vol. 12, p. 664826. https://doi.org/10.3389/fmicb.2021.664826

    Article  PubMed  PubMed Central  Google Scholar 

  8. Osterman, I.A., Dikhtyar, Yu.Yu., Bogdanov, A.A., Dontsova, P.V., and Sergiev, P.V., Regulation of gene expression in bacteria, Biochemistry (Moscow), 2015, vol. 80, pp. 1447–1456. https://doi.org/10.1134/S000629791511005X

    Article  PubMed  CAS  Google Scholar 

  9. Dubey, A.P., Pandey, P., Singh, V.S., Mishra, M.N., Singh, S., Mishra, R., and Tripathi, A.K., An ECF41 family σ factor controls motility and biogenesis of lateral flagella in Azospirillum brasilense Sp245, J. Bacteriol., 2020, vol. 202, no. 16, p. e00231-20. https://doi.org/10.1128/JB.00231-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Baldani, V.L.D, Baldani, J.I., and Döbereiner, J., Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat, Can. J. Microbiol., 1983, vol. 29, no. 8, pp. 924–929. https://doi.org/10.1139/m83-148

    Article  Google Scholar 

  11. Kovtunov, E.A., Petrova, L.P., Shelud’ko AV, and Katsy, E.I., Transposon insertion into a chromosomal copy of flhB gene is concurrent with defects in the formation of polar and lateral flagella in bacterium Azospirillum brasilense Sp245, Russ. J. Genet., 2013, vol. 49, pp. 881–884. https://doi.org/10.1134/S1022795413080061

    Article  CAS  Google Scholar 

  12. Tarrand, J.X., Krieg, N.E., and Döbereiner, J., A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov., Can. J. Microbiol., 1978, vol. 24, pp. 967–980. https://doi.org/10.1139/m78-160

    Article  PubMed  CAS  Google Scholar 

  13. Molecular Cloning: A Laboratory Manual, Sambrook, J., Fritsch, E.F., and Maniatis, T., Eds., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  14. Figurski, D.H. and Helinski, D.R., Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 4, pp. 1648–1652. https://doi.org/10.1073/pnas.76.4.1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Keen, N.T., Tamaki, S., Kobayashi, D., and Trollinger, D., Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria, Gene, 1988, vol. 70, no. 1, pp. 191–197. https://doi.org/10.1016/0378-1119(88)90117-5

    Article  PubMed  CAS  Google Scholar 

  16. Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P., A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene, 1998, vol. 212, no. 1, pp. 77–86. https://doi.org/10.1016/S0378-1119(98)00130-9

    Article  PubMed  CAS  Google Scholar 

  17. Vieira, J. and Messing, J., The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene, 1982, vol. 19, no. 3, pp. 259–268. https://doi.org/10.1016/0378-1119(82)90015-4

    Article  PubMed  CAS  Google Scholar 

  18. Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites, Proc.1st Int. Symposium on Nitrogen Fixation, Newton, W.E. and Nyman, C.J., Eds., Pullman, WA: Washington State University Press, 1976, pp. 518–538.

  19. Schelud’ko, A.V., Makrushin, K.V., Tugarova, A.V., Krestinenko, V.A., Panasenko, V.I., Antonyuk, L.P., and Katsy, E.I., Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins, Micbiol. Res., 2009, vol. 164, no. 2, pp. 149–156. https://doi.org/10.1016/j.micres.2006.11.008

    Article  CAS  Google Scholar 

  20. Kumar, S., Rai, A.K., Mishra, M.N., Shukla, M., Singh, P.K., and Tripathi, A.K., RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7, Microbiology, 2012, vol. 158, pp. 2891–2902. https://doi.org/10.1099/mic.0.062380-0

    Article  PubMed  CAS  Google Scholar 

  21. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the \({{2}^{{ - \Delta \Delta {{C}_{{\text{T}}}}}}}\) Method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.126210.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  22. Wisniewski-Dye’, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L., Wuichet, K., et al., Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments, PLoS Genet., 2011, vol. 7, no. 12, p. e1002430. https://doi.org/10.1371/journal.pgen.1002430

    Article  PubMed  CAS  Google Scholar 

  23. Brutinel, E.D. and Yahr, T.L., Control of gene expression by type III secretory activity, Curr. Opin. Microbiol., 2008, vol. 11, no. 2, pp. 128–133. https://doi.org/10.1016/j.mib.2008.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chevance, F.F.V. and Hughes, K.T., Coordinating assembly of a bacterial macromolecular machine, Nat. Rev. Microbiol., 2008, vol. 6, pp. 455–465. https://doi.org/10.1038/nrmicro1887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Smith, T.G. and Hoover, T.R. Deciphering bacterial flagellar gene regulatory networks in the genomic era, Adv. Appl. Microbiol., 2009, vol. 67, pp. 257–295. https://doi.org/10.1016/S0065-2164(08)01008-3

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Symbiosis Joint Facilities Center for Physical Chemical Biology and Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Saratov, Russia), for permission to work on the Leica DM6000 B and Libra 120 equipment.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Petrova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by M. Novikova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, L.P., Volokhina, I.V. & Sheludko, A.V. The Effect of the flhB Plasmid Gene of the Flagellar Export Component on Flagellation and Motility in Azospirillum Bacteria. Mol. Genet. Microbiol. Virol. 38, 168–176 (2023). https://doi.org/10.3103/S0891416823030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823030060

Keywords:

Navigation