Skip to main content
Log in

Photocatalytic Activity of SrTiO3 and BaTiO3 Nanostructures, Formed by the Sol-Gel Method, in the Process of Nitrogen Dioxide Decomposition

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Strontium and barium titanates with a perovskite structure have been obtained using a sol–gel method. It is shown that these materials are characterized by high values of a band gap (3.1 and 3.2 eV for SrTiO3 and BaTiO3, respectively). Morphological characteristics of the obtained titanates are considered, the presence of micrometer aggregates, consisting of nanosticks (diameter of 20-40 nm, length of 100-200 nm) and nanocrystals with size of 20-70 nm, is established. The photocatalytic properties of the samples in the process of NO2 decomposition to N2 and O2 under UV irradiation (λ = 365 nm) are studied, a possible mechanism of nitrogen dioxide conversion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. M. de Jersey, J. L. Lavers, G. R. Zosky, et al., Environ. Pollut., 1, No. 1, 122459 (2023), https://doi.org/10.1016/j.envpol.2023.122459.

    Article  CAS  Google Scholar 

  2. H. S. Russell, L. B. Frederickson, O. Hertel, et al., Catalysts, 11, No. 6, 675 (2021), https://doi.org/10.3390/catal11060675.

    Article  CAS  Google Scholar 

  3. Y. Guan, Y. Liu, Q. Lv, et al., J. Environ. Chem. Eng., 9, No. 6, 106770 (2021), https://doi.org/10.1016/j.cej.2020.127745.

    Article  CAS  Google Scholar 

  4. V. H. Nguyen, B. S. Nguyen, C. W. Huang, et al., J. Clean. Prod., 270, No. 1, 121912 (2020), https://doi.org/10.1016/j.jclepro.2020.121912.

    Article  CAS  Google Scholar 

  5. K. Skalska, A. Malankowska, J. Balcerzak, et al., Catalysts, 12, No. 8, 857 (2022), https://doi.org/10.3390/catal12080857.

    Article  CAS  Google Scholar 

  6. H. Wang, Q. Zhang, M. Qiu, et al., J. Mol. Liq., 334, No. 1, 116029 (2021), https://doi.org/10.1016/j.molliq.2021.116029.

    Article  CAS  Google Scholar 

  7. X. Hou, J. Ren, F. Li, et al., IOP Conf. Ser. Earth Environ. Sci, 295, No. 3, 032020 (2019), https://doi.org/10.1088/1755-1315/295/3/032020.

    Article  Google Scholar 

  8. O. M. Stepanenko, L. G. Reiter, V. M. Ledovs’kyh, and S. V. Ivanov, General and Inorganic Chemistry [In Ukrainian], Pedagogichna Presa (2002).

  9. W. Xuewen, Z. Zhiyong, and Z. Shuixian, Mater. Sci. Eng. B., 86, No. 1, 29-33 (2001), https://doi.org/10.1016/S0921-5107(01)00632-8.

    Article  Google Scholar 

  10. B. Reihl, J. G. Bednorz, K. A. Muller, et al., Phys. Rev. B., 30, No. 2, 803 (1984), https://doi.org/10.1103/PhysRevB.30.803.

    Article  CAS  Google Scholar 

  11. J. I. Fujisawa, T. Eda, and M. Hanaya, Chem. Phys. Lett., 685, No. 1, 23-26. (2017), https://doi.org/10.1016/j.cplett.2017.07.031.

    Article  CAS  Google Scholar 

  12. V. V. Deshmukh, C. R. Ravikumar, M. A. Kumar, et al., Environ. Chem. Ecotoxicol., 3, No. 1, 241-248 (2021), https://doi.org/10.1016/j.enceco.2021.07.001.

    Article  CAS  Google Scholar 

  13. W. Wang, L. Cao, W. Liu, et al., Ceram. Int., 39, No. 6, 7127-7134 (2013), https://doi.org/10.1016/j.ceramint.2013.02.055.

    Article  CAS  Google Scholar 

  14. R. P. Eischens and W. A. Pliskin, Adv. Catal., 10, No. 1, 1-56 (1958), https://doi.org/10.1016/S0360-0564(08)60403-4.

    Article  CAS  Google Scholar 

  15. W. Nabgan, H. Alqaraghuli, A. Owgi, et al., Int. J. Hydrog. Energy, 1, No. 1, 1-42 (2023), https://doi.org/10.1016/j.ijhydene.2023.05.152.

    Article  CAS  Google Scholar 

  16. F. Li, G. Liu, F. Liu, et al., Chemosphere, 324, No. 1, 138277 (2023), https://doi.org/10.1016/j.chemosphere.2023.138277.

    Article  CAS  PubMed  Google Scholar 

  17. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons (2009).

  18. S. Laufs, G. Burgeth, W. Duttlinger, et al., Atmos. Environ., 44, No. 19, 2341-2349 (2010), https://doi.org/10.1016/j.atmosenv.2010.03.038.

    Article  CAS  Google Scholar 

  19. Q. L. Yu, Y. Hendrix, S. Lorencik, et al., Build. Environ., 142, No. 1, 70-82 (2018), https://doi.org/10.1016/j.buildenv.2018.06.014.

    Article  Google Scholar 

  20. N. Bowering, G. S. Walker, and P. G. Harrison, Appl. Catal. B., 62, Nos. 3-4, 208-216 (2005), https://doi.org/10.1016/j.apcatb.2005.07.014.

    Article  CAS  Google Scholar 

  21. O. I. Malyi and A. Zunger, Phys. Rev. B., 101, No. 23, 235202 (2020), https://doi.org/10.1103/PhysRevB.101.235202.

    Article  CAS  Google Scholar 

  22. M. M. Ballar, Q. L. Yu, and H. J. H. Brouwers, Catal. Today, 161, No, 1, 175-180 (2011), DOI:https://doi.org/10.1016/j.cattod.2010.09.028.

    Article  CAS  Google Scholar 

  23. M. Janus, K. Bubacz, J. Zatorska, et al., Polish J. Chem. Technol., 17, No. 3, 8-12 (2015), https://doi.org/10.1515/pjct-2015-0042.

    Article  CAS  Google Scholar 

  24. M. Motala, L. Satrapinskyy, T. Roch., et al., Catal. Today, 287, No. 1, 59-64 (2017), https://doi.org/10.1016/j.cattod.2016.10.011.

    Article  CAS  Google Scholar 

  25. Z. Gu, B. Zhang, Y. Asakura, et al., Appl. Surf. Sci., 521, No. 1, 146213 (2020), https://doi.org/10.1016/j.apsusc.2020.146213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Ovcharov.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 4, pp. 240-246, July-August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharov, M.L., Glukhova, P.I., Mishura, A.M. et al. Photocatalytic Activity of SrTiO3 and BaTiO3 Nanostructures, Formed by the Sol-Gel Method, in the Process of Nitrogen Dioxide Decomposition. Theor Exp Chem 59, 276–284 (2023). https://doi.org/10.1007/s11237-024-09786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-024-09786-9

Keywords

Navigation