Skip to main content
Log in

Intensity Histogram-Based Reliable Image Analysis Method for Bead-Based Fluorescence Immunoassay

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Bead-based fluorescence immunoassay is drawing attention as a next-generation technology in disease diagnosis owing to its high sensitivity and multiplexing capability. Fluorescence imaging of beads is typically used to determine their mean fluorescence intensity. However, the mean intensity can be evaluated differently depending on the analysis methods [such as the shape and size of the region of interest (ROI)]. To address these problems, this study proposes a highly reliable and reproducible image analysis method utilizing a fluorescence intensity-based effective pixel extraction technique. Various potential sources of defective signals (e.g., fluorescence aggregation, non-specific antigen–antibody reactions, and bead defects) can be prevented from contributing to the average value by selectively extracting pixels representing the specific reactions of antigens and antibodies in the ROI. In this study, we fabricated a microfluidic chip composed of multiple bead-based detection lines, performed fluorescence immunoassay, and then compared the mean fluorescence intensity calculated from the fluorescence images with that of a conventional analysis method. Using the conventional method, the evaluated average mean intensity value of beads varied significantly based on the size of the ROI with the coefficients of variation ranging from approximately 29–95%. In contrast, the effective pixel extraction method resulted in a coefficient of variation of approximately 3–7% under varying ROI size. Furthermore, the coefficients of variation for four detection lines containing various types of defective signals significantly decreased from approximately 7.1% to 2.6%. The proposed technique will help in minimizing the analysis deviation caused by different ROI selections or defective signals in fluorescent image-based immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Kim, H., Lee, S., Lee, W., Kim, J.: Particle clustering: high-density microfluidic particle-cluster-array device for parallel and dynamic study of interaction between engineered particles (Adv. Mater. 31/2017). Adv. Mater. (2017). https://doi.org/10.1002/adma.201770222

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ladner, Y., Liu, D., Montels, J., Morel, J., Perrin, C.: Enzymatic reaction automation in nanodroplet microfluidic for the quality control of monoclonal antibodies. BioChip J. 16(3), 317–325 (2022). https://doi.org/10.1007/s13206-022-00063-2

    Article  CAS  Google Scholar 

  3. Lee, S.Y., et al.: Development of gut-mucus chip for intestinal absorption study. BioChip J. 17(2), 230–243 (2023). https://doi.org/10.1007/s13206-023-00097-0

    Article  CAS  Google Scholar 

  4. Kim, T.-Y., Kim, S., Jung, J.H., Woo, M.-A.: Paper-based radial flow assay integrated to portable isothermal amplification chip platform for colorimetric detection of target DNA. BioChip J. 17(2), 263–273 (2023). https://doi.org/10.1007/s13206-023-00101-7

    Article  CAS  Google Scholar 

  5. Jabbar, F., Kim, Y.-S., Lee, S.H.: Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips. BioChip J. 16(3), 305–316 (2022). https://doi.org/10.1007/s13206-022-00068-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, C.-C., Wang, C.-Y., Ko, W.-C., Hsueh, P.-R.: In vitro diagnostics of coronavirus disease 2019: technologies and application. J. Microbiol. Immunol. Infect. 54(2), 164–174 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Yang, S.-M., Lv, S., Zhang, W., Cui, Y.: Microfluidic Point-of-Care (POC) devices in early diagnosis: a review of opportunities and challenges. Sensors 22(4), 1620 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, S., et al.: Oscillatory flow-assisted efficient target enrichment with small volumes of sample by using a particle-based microarray device. Biosens. Bioelectron. 131, 280–286 (2019). https://doi.org/10.1016/j.bios.2019.01.067

    Article  CAS  PubMed  Google Scholar 

  9. Bithi, S.S., Vanapalli, S.A.: Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters. Sci. Rep. 7(1), 41707 (2017). https://doi.org/10.1038/srep41707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Squires, T.M., Messinger, R.J., Manalis, S.R.: Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 26(4), 417–426 (2008). https://doi.org/10.1038/nbt1388

    Article  CAS  PubMed  Google Scholar 

  11. Roh, S., Jang, Y., Yoo, J., Seong, H.: Surface modification strategies for biomedical applications: enhancing cell-biomaterial interfaces and biochip performances. BioChip J. 17(2), 174–191 (2023). https://doi.org/10.1007/s13206-023-00104-4

    Article  CAS  Google Scholar 

  12. Kim, D., Herr, A.E.: Protein immobilization techniques for microfluidic assays. Biomicrofluidics (2013). https://doi.org/10.1063/1.4816934

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salva, M.L., Rocca, M., Niemeyer, C.M., Delamarche, E.: Methods for immobilizing receptors in microfluidic devices: a review. Micro Nano Eng. 11, 100085 (2021). https://doi.org/10.1016/j.mne.2021.100085

    Article  CAS  Google Scholar 

  14. Chakraborty, S., Jaitpal, S., Acharya, S., Paul, D.: Effect of microchannel geometry and linker molecules on surface immobilization efficiency of proteins in microfluidic devices. J. Biotechnol. 364, 31–39 (2023). https://doi.org/10.1016/j.jbiotec.2023.01.005

    Article  CAS  PubMed  Google Scholar 

  15. Goddard, J.M., Erickson, D.: Bioconjugation techniques for microfluidic biosensors. Anal. Bioanal. Chem. 394(2), 469–479 (2009). https://doi.org/10.1007/s00216-009-2731-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chikkaveeraiah, B.V., Mani, V., Patel, V., Gutkind, J.S., Rusling, J.F.: Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens. Bioelectron. 26(11), 4477–4483 (2011). https://doi.org/10.1016/j.bios.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, S., Chae, J.: Methods of reducing non-specific adsorption in microfluidic biosensors. J. Micromech. Microeng. 20(7), 075015 (2010)

    Article  Google Scholar 

  18. Pivetal, J., et al.: Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers. Analyst 142(6), 959–968 (2017). https://doi.org/10.1039/C6AN02622B

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J., et al.: Microfluidic immunoassay for point-of-care testing using simple fluid vent control. Sens. Actuat. B: Chem. 316, 128094 (2020). https://doi.org/10.1016/j.snb.2020.128094

    Article  CAS  Google Scholar 

  20. Ecke, A., Westphalen, T., Hornung, J., Voetz, M., Schneider, R.J.: A rapid magnetic bead-based immunoassay for sensitive determination of diclofenac. Anal. Bioanal. Chem. 414(4), 1563–1573 (2022). https://doi.org/10.1007/s00216-021-03778-7

    Article  CAS  PubMed  Google Scholar 

  21. Lin, Z., et al.: A dual-encoded bead-based immunoassay with tunable detection range for COVID-19 serum evaluation. Angew. Chem. Int. Ed. 61(37), e202203706 (2022). https://doi.org/10.1002/anie.202203706

    Article  CAS  Google Scholar 

  22. Thompson, J.A., Du, X., Grogan, J.M., Schrlau, M.G., Bau, H.H.: Polymeric microbead arrays for microfluidic applications. J. Micromech. Microeng. 20(11), 115017 (2010)

    Article  Google Scholar 

  23. Lee, W., et al.: A single snapshot multiplex immunoassay platform utilizing dense test lines based on engineered beads. Biosens. Bioelectron. 190, 113388 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee W, Rhee J, Kim J. High-Throughput Spherical Supraparticle Self-Assembly by Enhanced Evaporation of Colloidal Water Droplets Through Thin Film of Water-Soluble Oil. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS)2023. p. 1080–3

  25. Sato, K., et al.: Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin a on polystyrene beads in a microchip. Anal. Chem. 72(6), 1144–1147 (2000). https://doi.org/10.1021/ac991151r

    Article  CAS  PubMed  Google Scholar 

  26. Chu, Y.W., et al.: Layer by layer assembly of biotinylated protein networks for signal amplification. Chem. Commun. 49(24), 2397–2399 (2013). https://doi.org/10.1039/C2CC38233D

    Article  CAS  Google Scholar 

  27. Lee, P.H., Miller, S.C., van Staden, C., Cromwell, E.F.: Development of a homogeneous high-throughput live-cell g-protein-coupled receptor binding assay. SLAS Discovery. 13(8), 748–754 (2008). https://doi.org/10.1177/1087057108317835

    Article  CAS  Google Scholar 

  28. Cantarero, L.A., Butler, J.E., Osborne, J.W.: The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassays. Anal. Biochem. 105(1), 375–382 (1980). https://doi.org/10.1016/0003-2697(80)90473-X

    Article  CAS  PubMed  Google Scholar 

  29. Xia, Y., et al.: Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv. Mater. 9(2), 147–149 (1997)

    Article  CAS  Google Scholar 

  30. Kim, P., et al.: Soft lithography for microfluidics: a review. Biochip J. 2(1), 1–11 (2008)

    Google Scholar 

  31. Qin, D., Xia, Y., Whitesides, G.M.: Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 5(3), 491 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. Bodas, D., Khan-Malek, C.: Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sens. Actuat. B: Chem. 123(1), 368–373 (2007). https://doi.org/10.1016/j.snb.2006.08.037

    Article  CAS  Google Scholar 

  33. Wang, J., et al.: A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10(22), 3157–3162 (2010). https://doi.org/10.1039/C0LC00132E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, H., Ó’Fágáin, C., O’Kennedy, R.: Antibody stability: a key to performance-analysis, influences and improvement. Biochimie 177, 213–225 (2020). https://doi.org/10.1016/j.biochi.2020.08.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (NRF-2021M3H4A4079557 and RS-2023-00213140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojin Kim.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, J., Bae, P. et al. Intensity Histogram-Based Reliable Image Analysis Method for Bead-Based Fluorescence Immunoassay. BioChip J 18, 137–145 (2024). https://doi.org/10.1007/s13206-023-00137-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00137-9

Keywords

Navigation