Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Third-order exceptional line in a nitrogen-vacancy spin system

Abstract

Exceptional points (EPs) are singularities in non-Hermitian systems, where k (k ≥ 2) eigenvalues and eigenstates coalesce. High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. Theory predicts even richer non-Hermitian topological phases for high-order EP geometries, such as lines or rings formed entirely by high-order EPs. However, experimental exploration of high-order EP geometries has hitherto proved difficult due to the demand for more degrees of freedom in the Hamiltonian’s parameter space or a higher level of symmetries. Here we observe a third-order exceptional line in an atomic-scale system. To this end, we use a nitrogen-vacancy spin in diamond and introduce multiple symmetries in the non-Hermitian Hamiltonian realized with the system. Furthermore, we show that the symmetries play an essential role in the occurrence of high-order EP geometries. Our approach can in future be further applied to explore high-order EP-related topological physics at the atomic scale and, potentially, for applications of high-order EPs in quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The third-order exceptional point structures of H(μ,ν)(γ,h) with different symmetries.
Fig. 2: Experimental system of an NV centre in diamond.
Fig. 3: Observation of the third-order EL.
Fig. 4: Behaviour of the EP3 in the two-dimensional parameter space with different symmetries.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information. Source data are provided with this paper.

Code availability

The codes that were used in this study are available from the corresponding author upon reasonable request.

References

  1. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    MathSciNet  ADS  Google Scholar 

  2. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    CAS  PubMed  ADS  Google Scholar 

  3. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS  Google Scholar 

  4. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS  Google Scholar 

  5. Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    PubMed  ADS  Google Scholar 

  6. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  7. Carlström, J. & Bergholtz, E. J. Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A 98, 042114 (2018).

    ADS  Google Scholar 

  8. Xiao, L. et al. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).

    CAS  Google Scholar 

  9. Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    CAS  Google Scholar 

  10. Minganti, F., Miranowicz, A., Chhajlany, R. W. & Nori, F. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps. Phys. Rev. A 100, 062131 (2019).

    CAS  ADS  Google Scholar 

  11. Minganti, F., Miranowicz, A., Chhajlany, R. W., Arkhipov, I. I. & Nori, F. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Phys. Rev. A 101, 062112 (2020).

    MathSciNet  CAS  ADS  Google Scholar 

  12. Lee, T. E., Reiter, F. & Moiseyev, N. Entanglement and spin squeezing in non-Hermitian phase transitions. Phys. Rev. Lett. 113, 250401 (2014).

    PubMed  ADS  Google Scholar 

  13. Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    PubMed  ADS  Google Scholar 

  14. Stalhammar, M. & Bergholtz, E. J. Classification of exceptional nodal topologies protected by PT symmetry. Phys. Rev. B 104, L201104 (2021).

    ADS  Google Scholar 

  15. Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524 (2014).

    CAS  ADS  Google Scholar 

  16. Peng, B. et al. Parity-time symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).

    CAS  Google Scholar 

  17. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    PubMed  ADS  Google Scholar 

  18. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single mode laser by parity–time symmetry breaking. Science 346, 972 (2014).

    CAS  PubMed  ADS  Google Scholar 

  19. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975 (2014).

    CAS  PubMed  ADS  Google Scholar 

  20. Chen, W., Özdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192 (2017).

    CAS  PubMed  ADS  Google Scholar 

  21. Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70 (2019).

    PubMed  ADS  Google Scholar 

  22. Fernández-Alcázar, L. J., Kononchuk, R. & Kottos, T. Enhanced energy harvesting near exceptional points in systems with (pseudo-) PT-symmetry. Commun. Phys. 4, 79 (2021).

    Google Scholar 

  23. Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  24. Zhang, W. et al. Observation of non-Hermitian topology with nonunitary dynamics of solid-state spins. Phys. Rev. Lett. 127, 090501 (2021).

    CAS  PubMed  ADS  Google Scholar 

  25. Abbasi, M., Chen, W., Naghiloo, M., Joglekar, Y. N. & Murch, K. W. Topological quantum state control through exceptional-point proximity. Phys. Rev. Lett. 128, 160401 (2022).

    CAS  PubMed  ADS  Google Scholar 

  26. Liu, W., Wu, Y., Duan, C.-K., Rong, X. & Du, J. Dynamically encircling an exceptional point in a real quantum system. Phys. Rev. Lett. 126, 170506 (2021).

    CAS  PubMed  ADS  Google Scholar 

  27. Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin system. Science 346, 878–880 (2019).

    MathSciNet  ADS  Google Scholar 

  28. Ding, L. et al. Experimental determination of PT-symmetric exceptional points in a single trapped ion. Phys. Rev. Lett. 126, 083604 (2021).

    CAS  PubMed  ADS  Google Scholar 

  29. Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).

    Google Scholar 

  30. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected higher-order exceptional points and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).

    CAS  PubMed  ADS  Google Scholar 

  31. Mandal, I. & Bergholtz, E. J. Symmetry and higher-order exceptional points. Phys. Rev. Lett. 127, 186601 (2021).

    CAS  PubMed  ADS  Google Scholar 

  32. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187 (2017).

    CAS  PubMed  ADS  Google Scholar 

  33. Zeng, C. et al. Ultra-sensitive passive wireless sensor exploiting high-order exceptional point for weakly coupling detection. New J. Phys. 23, 063008 (2021).

    ADS  Google Scholar 

  34. Wang, X. G., Guo, G. H. & Berakdar, J. Enhanced sensitivity at magnetic high-order exceptional points and topological energy transfer in magnonic planar waveguides. Phys. Rev. Appl. 15, 034050 (2021).

    CAS  ADS  Google Scholar 

  35. Zeng, C. et al. Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system. Opt. Express 27, 27562 (2019).

    CAS  PubMed  ADS  Google Scholar 

  36. Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    CAS  PubMed  ADS  Google Scholar 

  37. Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077 (2020).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  38. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Google Scholar 

  39. Yang, Z., Schnyder, A. P., Hu, J. & Chiu, C.-K. Fermion doubling theorems in two-dimensional non-Hermitian systems for Fermi points and exceptional points. Phys. Rev. Lett. 126, 086401 (2021).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  40. Yu, Y. et al. Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. NPJ Quantum Inf. 8, 116 (2022).

    ADS  Google Scholar 

  41. Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    CAS  PubMed  ADS  Google Scholar 

  42. Qin, G.-Q. et al. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photonics Rev. 15, 2000569 (2021).

    ADS  Google Scholar 

  43. Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 034301 (2021).

    CAS  PubMed  ADS  Google Scholar 

  45. Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).

    CAS  PubMed  ADS  Google Scholar 

  46. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  47. Wiersig, J. Review of exceptional point-based sensors. Photon. Res. 8, 1457–1467 (2020).

    Google Scholar 

  48. Yu, S. et al. Experimental investigation of quantum PT-enhanced sensor. Phys. Rev. Lett. 125, 240506 (2020).

    CAS  PubMed  ADS  Google Scholar 

  49. Yao, S., Yan, Z. & Wang, Z. Topological invariants of Floquet systems: general formulation, special properties, and Floquet topological defects. Phys. Rev. B 96, 195303 (2017).

    ADS  Google Scholar 

  50. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    ADS  Google Scholar 

  51. Tang, W., Ding, K. & Ma, G. Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces. Nat. Commun. 14, 6660 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2018YFA0306600 (J.D.)), the National Natural Science Foundation of China (grant numbers 12174373 (Yang Wu), 92265204 (Ya Wang) and 12261160569 (X.R.)). J.D. acknowledges funding from the Chinese Academy of Sciences (grant numbers XDC07000000 and GJJSTD20200001), the Innovation Program for Quantum Science and Technology (grant number 2021ZD0302200), the Anhui Initiative in Quantum Information Technologies (grant number AHY050000) and the Hefei Comprehensive National Science Center. Ya Wang thanks the Fundamental Research Funds for the Central Universities for their support. W.L. is funded by Beijing University of Posts and Telecommunications Innovation Group. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and X.R. proposed the idea and supervised the experiments. X.R., Yang Wu and Yunhan Wang designed the experiments. Yunhan Wang and Yang Wu performed the experiments. X.Y. and Ya Wang prepared the sample. Yunhan Wang, Yang Wu, W.L., Z.N. and C.-K.D. carried out the calculations. All authors analysed the data, discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Xing Rong or Jiangfeng Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Weijian Chen and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Measurement of the parameters \({\mathbf{\gamma }}_{\mathbf{exp }}\), \({\mathbf{h}}_{\mathbf{exp }}\), \({\mathbf{\mu }}_{\mathbf{exp }}\) and \({\mathbf{\nu }}_{\mathbf{exp }}\) of the non-Hermitian Hamiltonian.

a, The measured quantities CPT and the retrieved parameter \({\nu }_{\exp }\). b, The measured quantities CpsCh and the retrieved parameter \({\mu }_{\exp }\). c-d, Population evolution under Hμ,ν(γ,h) with two different sets of initial states and measurement bases. \({\mu }_{\exp }\) and \({\nu }_{\exp }\) are obtained via linear fitting, and \({\gamma }_{\exp }\) and \({{{{\rm{h}}}}}_{\exp }\) are obtained from the evolution as described in the text. Red dots with error bars are experimental results, and blue lines are the theoretical predictions. All errors shown are one standard deviation with one million averages.

Source data

Extended Data Fig. 2 Eigenstates of the non-Hermitian Hamiltonian at the EP3 where μ=ν=0, h=0, γ=1.

a-f, Real (a,c,e) and imaginary (b,d,f) parts of the measured density matrices \({{\rho }_{1}}^{\exp }\) (a,b), \({{\rho }_{2}}^{\exp }\) (c,d) and \({{\rho }_{3}}^{\exp }\) (e,f) of three eigenstates (labelled by 1,2 and 3) obtained by quantum state tomography. g,h,\({{\rho }_{1}}^{{{{\rm{theo}}}}}\)=\({{\rho }_{2}}^{{{{\rm{theo}}}}}\)=\({{\rho }_{3}}^{{{{\rm{theo}}}}}\)=ρtheo is the real (g) and imaginary (h) parts the density matrix of theoretically predicted eigenstate. All errors shown are one standard deviation with one million averages.

Source data

Supplementary information

Supplementary Information

Supplementary discussion including Supplementary Figs. 1–9 and Table 1.

Supplementary Data 3

The result of the Ramsey experiment and the Rabi oscillation driven by the AC electric fields.

Supplementary Data 5

The measured quantities CpsCh and CPT and the retrieved parameters \({\mu }_{\exp }\) and \({\nu }_{\exp }\).

Supplementary Data 6

Population evolution under Hμ,ν(γ,h) with two different sets of initial states and measurement bases.

Supplementary Data 7

Eigenstates of the NH Hamiltonian at the EP3 where μ=ν=0, h=0.35 and γ=1.06.

Supplementary Data 8

Eigenstates of the NH Hamiltonian at the EP2 where μ=0.2, ν=0, h=-0.35 and γ=0.73.

Supplementary Data 9

Eigenstates of the NH Hamiltonian with μ=0.2, ν=0.05, h=0 and γ=0.96.

Source data

Source Data Fig. 3

Source Data for Fig. 3

Source Data Fig. 4

Source Data for Fig. 4

Source Data Extended Data Fig./Table 1

Source Data for Extended Data Fig. 1.

Source Data Extended Data Fig./Table 2

Source Data for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, Y., Ye, X. et al. Third-order exceptional line in a nitrogen-vacancy spin system. Nat. Nanotechnol. 19, 160–165 (2024). https://doi.org/10.1038/s41565-023-01583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01583-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing