Skip to main content
Log in

Assessing the Effectiveness of Sex-Linked Molecular Markers to Identify Neomale Breeders for the Production of All-Female Progenies of Rainbow Trout

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A cultured stock of masculinized rainbow trout was diagnosed with Y‐linked markers (sdY and OmyY1) aiming to detect neomales before their use at the production level. To achieve a reliable diagnosis, the following steps were considered: (1) PCR amplification of the housekeeping β-actin gene to determine the DNA quality of samples, (2) validation of the Y‐linked markers by their PCR amplification in male and female samples with known sex, and (3) molecular sexing of the masculinized juveniles based on male-specific (XY genotype) and neomale-specific (XX genotype) PCR product band patterns visualized on agarose gel. The validity and concordance of the markers were assessed. The housekeeping gene identified samples with negative PCR amplification revealing a poor DNA quality. The OmyY1 marker presented a more distinctive PCR product band pattern between males and females than the sdY marker and identified a higher proportion of true males (sensitivity = 1.0 and 0.91, respectively). The OmyY1 marker accurately identified 105 neomales of the 198 masculinized individuals on account their consistent and distinctive PCR product band pattern. Among both markers, there was a medium high positive concordance (γ index = 0.7). It is concluded that the OmyY1 marker shows the best performance to reliably detect neomales, a step that is essential to have certified breeders for the production of all-female progenies in fish farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Altman DG, Bland JM (1994) Statistics notes: diagnostic tests 1: sensitivity and specificity. BMJ 308:1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araneda C, Lam N, Iturra P (2019) Development and application of sex-linked markers in Salmonidae. In: Wang H-P, Piferrer F, Chen S-L, Shen Z-G (eds) Sex Control in Aquaculture, Fst. John Wiley and Sons Inc., New Jersey, USA, pp 281–295

    Google Scholar 

  • Bastardo HR, Sofía SB (2003) Crecimiento de truchas todas hembras y de ambos sexos en un criadero venezolano. Zootec Trop 21:17–26

    Google Scholar 

  • Brunelli JP, Wertzler KJ, Sundin K et al (2008) Y-specific sequences and polymorphisms in rainbow trout and Chinook salmon. Genome 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Campbell MR, Kozfkay CC, Copeland T et al (2012) Estimating abundance and life history characteristics of threatened wild Snake River steelhead stocks by using genetic stock identification. Trans Am Fish Soc 141:1310–1327

    Article  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour 15:855–867

    Article  CAS  PubMed  Google Scholar 

  • Cavileer TD, Hunter SS, Olsen J et al (2015) A sex-determining gene (sdY) assay shows discordance between phenotypic and genotypic sex in wild populations of Chinook salmon. Trans Am Fish Soc 144:423–430

    Article  CAS  Google Scholar 

  • Colihueque N, Iturra P, Estay F et al (2001) Diploid chromosome number variations and sex chromosome polymorphism in five cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 198:63–77

    Article  Google Scholar 

  • Díaz NF, Neira R (2005) Biotecnología Aplicada a la Acuicultura I. Biotecnologías clásicas aplicadas a la reproducción de especies cultivadas. Cienc e Investig Agrar 32:45–59

    Google Scholar 

  • Díaz NF, Colihueque N, Estay FJ (2002) Manejos con neomachos aplicados al cultivo de peces. Av En Prod Anim 27:85–102

    Google Scholar 

  • Donisi PM, Di Lorenzo N, Paparella A et al (2006) Molecular diagnosis of non-Hodgkin B lymphomas by capillary electrophoresis and Genescan analysis: a molecular pathology laboratory experience. Pathologica 98:139–146

    CAS  PubMed  Google Scholar 

  • Hartley SE (1987) The chromosomes of salmonid fishes. Biol Rev 62:197–214

    Article  Google Scholar 

  • Harwood AS, Phillips RB (2011) A suite of twelve single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trout. Mol Ecol Resour 11:382–385

    Article  CAS  PubMed  Google Scholar 

  • Hendrix Genetics Chile (2003) Trucha de mar. https://www.hendrix-genetics-chile.com/es/productos/trucha-de-mar/. Accessed 17 Sept 2023

  • Heumann C, Shalabah MS (2016) Introduction to statistics and data analysis. Springer International Publishing AG, Cham, Switzerland

    Book  Google Scholar 

  • Iturra P, Bagley M, Vergara N, Imbert P, Medrano JF (2001) Development and characterization of DNA sequence OmyP9 associated with the sex chromosomes in rainbow trout. Heredity (edinb) 86:412–419

    Article  CAS  PubMed  Google Scholar 

  • Johnson MC, Sangrador-Vegas A, Smith TJ et al (2004) Molecular cloning and expression analysis of rainbow trout (Oncorhynchus mykiss) matrix metalloproteinase-9. Fish Shellfish Immunol 17:499–503

    Article  CAS  PubMed  Google Scholar 

  • Karki G (2020) Molecular markers-types and applications. Online Biol Notes. https://www.onlinebiologynotes.com/molecular-markers-types-and-applications/. Accessed 21 Sept 2023

  • Kause A, Ritola O, Paananen T et al (2003) Selection against early maturity in large rainbow trout Oncorhynchus mykiss: the quantitative genetics of sexual dimorphism and genotype-by-environment interactions. Aquaculture 228:53–68

    Article  Google Scholar 

  • López ME, Araneda C (2012) An evaluation of a diagnostic test to identify the sex of farmed rainbow trout, using sex-specific molecular markers. Lat Am J Aquat Res 40:1085–1089

    Article  Google Scholar 

  • McKay LR, Schaeffer LR, McMillan I (2002) Analysis of growth curves in rainbow trout using random regression. In: 7th World Congr Genet Appl to Livest Prod. Montpellier, France

  • Menu B, Peruzzi S, Vergnet A et al (2005) A shortcut method for sexing juvenile European sea bass, Dicentrarchus labrax L. Aquac Res 36:41–44

    Article  Google Scholar 

  • Ohms HA, Sloat MR, Reeves GH et al (2013) Influence of sex, migration distance, and latitude on life history expression in steelhead and rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 71:70–80

    Article  Google Scholar 

  • Piscícola Huililco Ltda (2023) Trucha Blueback nuestra propia línea de trucha. https://www.ovasdetrucha.cl/produccion/. Accessed 17 Sept 2023

  • Pita Fernández S, Pértegas Díaz S (2003) Pruebas diagnósticas. Cad. Aten Primaria 10:120–124

    Google Scholar 

  • Sepúlveda P (2011) Estimación de la diversidad genética en seis cepas y dos poblaciones de cultivo de trucha arcoiris (Oncorhynchus mykiss), utilizando marcadores microsatélites. Universidad de Chile, Santiago de Chile, Tesis de Magíster en Ciencias de la Acuicultura

    Google Scholar 

  • Sheehan RJ, Shasteen SP, Suresh AV et al (1999) Better growth in all-female diploid and triploid rainbow trout. Trans Am Fish Soc 128:491–498

    Article  Google Scholar 

  • Shui F, Qiu G, Pan S et al (2023) Identification of stable reference genes for quantitative gene expression analysis in the duodenum of meat-type ducks. Front Vet Sci 10:1160384

    Article  PubMed  PubMed Central  Google Scholar 

  • Taggart JB, Hynes RA, Prodöuhl PA et al (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965

    Article  CAS  Google Scholar 

  • Thorgaard GH (1977) Heteromorphic sex chromosomes in male rainbow trout. Science 196:900–902

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yano A, Guyomard R, Nicol B et al (2012) An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Yano A, Nicol B, Jouanno E et al (2013) The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl 6:486–496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the staff of the Piscícola Huililco Ltda. for their collaboration in the work, especially, to Francisco Estay from the Gerencia de Investigación y Desarrollo.

Author information

Authors and Affiliations

Authors

Contributions

Nelson Colihueque was responsible for the conception and design of the work and wrote, edited, and revised critically the manuscript for important intellectual content. Margarita Parraguez performed laboratory analysis and revised the manuscript.

Corresponding author

Correspondence to Nelson Colihueque.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colihueque, N., Parraguez, M. Assessing the Effectiveness of Sex-Linked Molecular Markers to Identify Neomale Breeders for the Production of All-Female Progenies of Rainbow Trout. Mar Biotechnol 26, 199–204 (2024). https://doi.org/10.1007/s10126-024-10288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-024-10288-x

Keywords

Navigation