Skip to main content
Log in

Fractional Tumour-Immune Model with Drug Resistance

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Cancer is a group of diseases in which cells grow uncontrollably and can spread into other tissues. Various studies consider the interactions between cancer cells and the immune system as well as different types of treatment. Mathematical models have been used to study the growth of cancerous cells. We study a fractional order model that describes some aspects of the interactions among host, effector immune, and cancer cells. A drug treatment is considered to analyse the cancerous cells proliferation. Due to the chemotherapy, we split the fractional equation of the cancerous cells into drug sensitivity and resistance. We show that not only the chemotherapy but also the drug resistance plays an important role in the growth rate of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Ambrosi, F. Mollica, On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)

    Article  MathSciNet  Google Scholar 

  2. T. Sinha, Tumors: benign and malignant. Canc. Therapy Oncol. Int. J. 10, 1 (2018)

    CAS  Google Scholar 

  3. S. Ohshika, T. Saruga, T. Ogawa, H. Ono, Y. Ishibashi, Distinction between benign and malignant soft tissue tumors based on an ultrasonographic evaluation of vascularity and elasticity. Oncol. Lett. 21, 281 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R.A. Weinberg, How cancer arises. Sci. Am. 275, 62–70 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. J. Balogh, D. Victor III., E.H. Asham, S.G. Burroughs, M. Boktour, A. Saharia, X. Li, R.M. Ghobrial, H.P. Monsour Jr., Hepatocellular carcinoma: a review. J. Hepatocell Carcinoma 3, 41–53 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Belson, B. Kingsley, A. Holmes, Risk factors for acute leukemia in children: a review. Environ. Health Perspect. 115, 138–145 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. R. Küppers, The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9, 15–27 (2009)

    Article  PubMed  Google Scholar 

  8. D. Schadendorf, A.C.J. van Akkooi, C. Berking, K.G. Griewank, R. Gutzmer, A. Hauschild, A. Stang, A. Roesch, S. Ugurel, Melanoma. The Lancet 392(10151), 971–984 (2018)

    Article  Google Scholar 

  9. M. Weller, W. Wick, K. Aldape, M. Brada, M. Berger, S.M. Pfister, R. Nishikawa, M. Rosenthal, P.Y. Wen, R. Stupp, G. Reifenberger, Glioma. Nat. Rev. Dis. Primers. 1, 1–18 (2015)

    Article  Google Scholar 

  10. L. Wyld, R.A. Audisio, G.J. Poston, The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 12, 115–124 (2015)

    Article  PubMed  Google Scholar 

  11. R. Baskar, K.A. Lee, R. Yeo, K.-W. Yeoh, Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  12. B.A. Chabner, T.G. Roberts Jr., Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. J.N. Blattman, P.D. Greenberg, Cancer immunotherapy: a treatment for the masses. Science 305, 200 (2005)

    Article  ADS  Google Scholar 

  14. A.D. Waldman, J.M. Fritz, M.J. Lenardo, A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. M. Vanneman, G. Dranoff, Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H.B. Caglar, E.H. Baldini, M. Othus, M.S. Rabin, R. Bueno, D.J. Sugarbaker, S.J. Mentzer, P.A. Jänne, B.E. Johnson, A.M. Allen, Outcomes of patients with stage III nonsmall cell lung cancer treated with chemotherapy and radiation with and without surgery. Cancer 115, 4156–4166 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. H. Zahreddine, K.L.B. Borden, Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 4, 28 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  20. M. Shanker, D. Willcutts, J.A. Roth, R. Ramesh, Drug resistance in lung cancer. Lung Cancer Targets Ther. 1, 23–36 (2010)

    CAS  Google Scholar 

  21. T. Hu, Z. Li, C.-Y. Gao, C.H. Cho, Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol. 22, 6876–6889 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Long, Y. Zhang, X. Yu, J. Yang, D.G. LeBrun, C. Chen, Q. Yao, M. Li, Overcome drug resistance in pancreatic cancer. Expert Opin. Ther. Targets 15, 817–828 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Tang, Y. Wang, M.F. Kiani, B. Wang, Classification, treatment strategy, and associated drug resistance in breast cancer. Clin. Breast Cancer 16, 335–343 (2016)

    Article  PubMed  Google Scholar 

  24. C. Altrock, L.L. Liu, F. Michor, The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. F.S. Borges, K.C. Iarosz, H.P. Ren, A.M. Batista, M.S. Baptista, R.L. Viana, S.R. Lopes, C. Grebogi, Model for tumour growth with treat by continuous and pulsed chemotherapy. Biosyst. 116, 43–48 (2014)

    Article  CAS  Google Scholar 

  26. K.C. Iarosz, F. Borges, A.M. Batista, M.S. Baptista, R.A.N. Siqueira, R.L. Viana, S.R. Lopes, Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment. J. Theor. Biol. 368, 113–121 (2015)

    Article  PubMed  ADS  Google Scholar 

  27. F. Nani, H.I. Freedman, A mathematical model of cancer treatment by immunotherapy. Math. Biosci. 163, 159–199 (2000)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  28. L.G. de Pillis, W. Gu, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238, 841–862 (2006)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  29. L. de Pillis, K.R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore, B. Preskill, Mathematical model creation for cancer chemo-immunotherapy. Comput. Math. Methods Med. 10, 2009 (2008)

    MathSciNet  Google Scholar 

  30. M.R. Gallas, M.R. Gallas, J.A.C. Gallas, Distribution of chaos and periodic spikies in a three-cell population model of cancer. Eur. Phys. J. Special Topics 223, 2131–2144 (2014)

    Article  CAS  ADS  Google Scholar 

  31. E. Sayari, S.T. da Silva, K.C. Iarosz, R.L. Viana, J.D. Szezech Jr., A.M. Batista, Prediction of fluctuations in a chaotic cancer model using machine learning. Chaos Soliton Fract. 164, 112616 (2022)

    Article  MathSciNet  Google Scholar 

  32. S. Mashayekhi, S. Sedaghat, Fractional model of stem cell population dynamics. Chaos Soliton Fract. 146, 110919 (2021)

    Article  MathSciNet  Google Scholar 

  33. J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, A fractional mathematical model of breast cancer competition model. Chaos Soliton Fract. 127, 38–54 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  34. E.C. Gabrick, M.R. Sales, E. Sayari, J. Trobia, E.K. Lenzi, F.S. Borges, J.D. Szezech Jr., K.C. Iarosz, R.L. Viana, I.L. Caldas, A.M. Batista, Fractional dynamics and recurrence analysis in cancer model. Braz. J. Phys. 53, 145 (2023)

    Article  ADS  Google Scholar 

  35. S. Kumar, A. Kumar, B. Samet, J.F. Gómez-Aguilar, M.S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Soliton Fract. 141, 110321 (2020)

    Article  MathSciNet  Google Scholar 

  36. M.F. Farayola, S. Shafie, F.M. Siam, I. Khan, Numerical simulation of normal and cancer cell’s populations with fractional derivative under radiotherapy. Comput. Methods Programs Biomed. 187, 105202 (2020)

    Article  PubMed  Google Scholar 

  37. H. Hassani, J.A.T. Machado, S. Meharabi, An optimization technique for solvin a class of nonlinear fractional optimal control problems: application in cancer treatment. Appl. Math. Model. 93, 868–884 (2021)

    Article  MathSciNet  Google Scholar 

  38. L. Xuan, S. Ahmad, A. Ullah, S. Saifullah, A. Akgül, H. Qu, Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model. Chaos Solitons Fract. 159, 112113 (2022)

    Article  MathSciNet  Google Scholar 

  39. C. Letellier, F. Denis, L.A. Aguirre, What can be learned from a chaotic cancer model? J. Theor. Biol. 322, 7–16 (2013)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  40. E. Diz-Pita, M.V. Otero-Espinar, Predator-prey models: a review of some recent advances. Mathematics 9, 1783 (2021)

    Article  Google Scholar 

  41. M. Itik, S.P. Banks, Chaos in a three-dimensional cancer model. Int. J. Bifurcat. Chaos 20, 71–79 (2010)

    Article  MathSciNet  Google Scholar 

  42. F. Liu, M.M. Meerschaert, S. Momani, N.N. Leonenko, W. Chen, O.P. Agrawal, Fractional differential equations. Int. J. Differ. Equ. 2010, 215856 (2010)

    Google Scholar 

  43. J. Trobia, K. Tian, A.M. Batista, C. Grebogi, H.-P. Ren, M.S. Santos, P.R. Protachevicz, F.S. Borges, J.D. Szezech Jr., R.L. Viana, I.L. Caldas, K.C. Iarosz, Mathematical model of brain tumour growth with drug resistance. Commun. Nonlinear Sci. Numer. Simul. 103, 106013 (2021)

    Article  MathSciNet  Google Scholar 

  44. V.A. Kuznetsov, I.A. Makalkin, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)

    Article  CAS  PubMed  Google Scholar 

  45. L.G. de Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study. Math. Comput. Modelling 37, 1221–1244 (2003)

    Article  Google Scholar 

  46. L.R. Evangelista, E.K. Lenzi, Fractional diffusion equations and anomalous diffusion. Cambridge University Press (2018)

  47. N.J. Vogelzang, Continuous infusion chemotherapy: a critical review. J. Clin. Oncol. 2, 1289–1304 (1984)

    Article  CAS  PubMed  Google Scholar 

  48. A.R. Dixon, L. Jackson, S.Y. Chan, R.A. Badley, R.W. Blamey, Continuous chemotherapy in responsive metastatic breast cancer: a role for tumour markers? Br. J. Cancer 68, 181–185 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Tuettenbert, R. Grobholz, T. Korn, F. Wenz, R. Erber, P. Vajkoczy, Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of blioblastoma multiforme. J. Cancer Res. Clin. Oncol. 131, 31–40 (2005)

    Article  Google Scholar 

  50. M. Rabé, S. Dumont, A. Álvarez-Arenas, H. Janati, J. Belmonte-Beitia, G.F. Calvo, C. Thibault-Carpentier, Q. Séry, C. Chauvin, N. Joalland, F. Briand, S. Blandi, E. Scotet, C. Pecqueur, J. Clairambault, L. Oliver, V. Perez-Garcia, A. Nadaradjane, P.-F. Cartron, C. Gratas, F.M. Vallette, Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 11, 19 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  51. G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar, Drug resistance in cancer: an overview. Cancers 6, 1769–1792 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was possible by partial financial support from the following Brazilian government agencies: CNPq, CAPES, Fundação Araucária, and Fundação de Amparo à Pesquisa do Estado de São Paulo. We would like to thank www.105groupscience.com.

Funding

I.L.C. received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo, processo FAPESP 2018/03211-6. E.C.G. received financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88881.846051/2023-01.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Ana P. S. Koltun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltun, A.P.S., Trobia, J., Batista, A.M. et al. Fractional Tumour-Immune Model with Drug Resistance. Braz J Phys 54, 41 (2024). https://doi.org/10.1007/s13538-024-01417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01417-x

Keywords

Navigation