Skip to main content
Log in

Movement Trend Alterations in the Periaqueductal Gray (PAG)-Employed Ratbot Navigation Are Correlated with Stimulation Parameters

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In previous studies, Periaqueductal Gray (PAG) stimulation was used to stop ratbots from moving. Due to the homology between the PAG and the intercollicular nucleus, which has been used for forward movement in birds, we investigated the possibility of PAG application to induce forward locomotion for the first time. Using a corridor maze, the traveled distances via PAG electrical stimulation were examined in nine Wistar male rats during three sessions. A custom-designed stimulator was developed to apply the stimulation. The results showed reductions in responses to stimulation over time. Accordingly, the traveled distances had negative slopes during the consecutive trials (in 8 out of the 9 rats), and the slope mean was significantly different from zero. There was a strong correlation between the stimulation parameters (electric Charge per Phase (CPP) and the Number of Pulses (NP)) and the observed slopes. The negative Movement Slopes (MS) were highly correlated with the CPP and the NP, as the Pearson's linear correlation coefficients were − 0.87 and − 0.79, respectively. The MS-CPP coefficients of determination (R-squared) were also between 0.76 and 0.95. In addition, the MS-NP coefficients of determination were between 0.63 and 0.87. Thus, it is concluded that the electrical stimulation parameters influence the behavioral outcomes directly. Furthermore, the PAG area may be considered a suitable candidate for forward locomotion control in the future if the area is harnessed effectively to prevent undesirable chaotic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets of the current study are available from the corresponding authors upon requests. Please refer to the following Google Drive link to observe the experiment’s clips: https://drive.google.com/drive/folders/11wreChR1X1SaeZvQH-EdMY7yOGLrVcnP?usp=share_link

References

  1. Romano, D., Donati, E., Benelli, G., & Stefanini, C. (2019). A review on animal–robot interaction: From bio-hybrid organisms to mixed societies. Biological Cybernetics, 113, 201–225. https://doi.org/10.1007/s00422-018-0787-5

    Article  Google Scholar 

  2. Zhou, Z. Y., Liu, D. H., Sun, H., Xu, W. B., Tian, X. M., Li, X. Y., Cheng, H., & Wang, Z. L. (2021). Pigeon robot for navigation guided by remote control: System construction and functional verification. Journal of Bionic Engineering, 18, 184–196. https://doi.org/10.1007/s42235-021-0013-3

    Article  Google Scholar 

  3. Talwar, S. K., Xu, S., Hawley, E. S., Weiss, S. A., Moxon, K. A., & Chapin, J. K. (2002). Rat navigation guided by remote control. Nature, 417(6884), 37–38. https://doi.org/10.1038/417037a

    Article  Google Scholar 

  4. Sun, C., Zheng, N. G., Zhang, X. L., Chen, W. D., & Zheng, X. X. (2013). Automatic navigation for rat-robots with modeling of the human guidance. Journal of Bionic Engineering, 10(1), 46–56. https://doi.org/10.1016/S1672-6529(13)60198-5

    Article  Google Scholar 

  5. Xu, K., Zhang, J. C., Zhou, H., Lee, J. C. T., & Zheng, X. X. (2016). A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus. Behavioural Brain Research, 298, 150–157. https://doi.org/10.1016/j.bbr.2015.11.002

    Article  Google Scholar 

  6. Khajei, S., Shalchyan, V., & Daliri, M. R. (2019). Ratbot navigation using deep brain stimulation in ventral posteromedial nucleus. Bioengineered, 10(1), 250–260. https://doi.org/10.1080/21655979.2019.1631103

    Article  Google Scholar 

  7. Yu, Y. P., Wu, Z. H., Xu, K., Gong, Y. Y., Zheng, N. G., Zheng, X. X., & Pan, G. (2016). Automatic training of rat cyborgs for navigation. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2016/6459251

    Article  Google Scholar 

  8. Yoshimoto, A., Shibata, Y., Kudara, M., Ikegaya, Y., & Matsumoto, N. (2022). Enhancement of motor cortical gamma oscillations and sniffing activity by medial forebrain bundle stimulation precedes locomotion. Eneuro. https://doi.org/10.1523/ENEURO.0521-21.2022

    Article  Google Scholar 

  9. Yun, S. H., Koh, C. S., Jeong, J. S., Seo, J. M., Ahn, S. H., Choi, G. J., Shim, S. Y., Shin, J. W., Jung, H. H., Chang, J. W., & Kim, S. J. (2019). Remote-controlled fully implantable neural stimulator for freely moving small animal. Electronics, 8(6), 706. https://doi.org/10.3390/electronics8060706

    Article  Google Scholar 

  10. Wang, H., Yang, J. Q., Lv, C. Z., Huai, R. T., & Li, Y. X. (2018). Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Animal Biology, 68(2), 213–225. https://doi.org/10.1163/15707563-17000053

    Article  Google Scholar 

  11. Lin, J. Y., Yu, C. N., Jia, J., Zhang, S. M., Wang, Y. W., Chen, W. D., & Zheng, X. X. (2010) Using dlPAG-evoked immobile behavior in animal-robotics navigation. 2010 5th International Conference on Computer Science & Education, IEEE, Hefei, China, pp. 1295–1298. DOI: https://doi.org/10.1109/ICCSE.2010.5593729

  12. Chen, S. C., Zhou, H., Guo, S. C., Zhang, J. C., Qu, Y., Feng, Z. Y., Xu, K., & Zheng, X. X. (2015). Optogenetics based rat–robot control: Optical stimulation encodes “stop” and “escape” commands. Annals of Biomedical Engineering, 43, 1851–1864. https://doi.org/10.1007/s10439-014-1235-x

    Article  Google Scholar 

  13. Chen, S. C., Qu, Y., Guo, S. C., Shi, Z. Y., Xu, K., Zheng, X. X. (2013) Encode the “STOP” command by photo-stimulation for precise control of rat-robot. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. Osaka, Japan, pp. 2172–2175. DOI: https://doi.org/10.1109/EMBC.2013.6609965

  14. Deng, H. F., Xiao, X., & Wang, Z. R. (2016). Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. Journal of Neuroscience, 36(29), 7580–7588. https://doi.org/10.1523/JNEUROSCI.4425-15.2016

    Article  Google Scholar 

  15. Schuessler, B. (2022). Thinking outside the conditioning box: ethological paradigms for studying fear, anxiety and risky decision-making in rodents, Doctoral dissertation, University of Washington

  16. Reis, F. M., Lee, J. Y., Maesta-Pereira, S., Schuette, P. J., Chakerian, M., Liu, J., La-Vu, M. Q., Tobias, B. C., Ikebara, J. M., Kihara, A. H., Canteras, N. S., Kao, J. C., & Adhikari, A. (2021). Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife, 10, e64934. https://doi.org/10.7554/eLife.64934

    Article  Google Scholar 

  17. Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in Cognitive Sciences, 23(4), 334–348. https://doi.org/10.1016/j.tics.2019.01.012

    Article  Google Scholar 

  18. Kim, L. H., Sharma, S., Sharples, S. A., Mayr, K. A., Kwok, C. H., & Whelan, P. J. (2017). Integration of descending command systems for the generation of context-specific locomotor behaviors. Frontiers in Neuroscience, 11, 581. https://doi.org/10.3389/fnins.2017.00581

    Article  Google Scholar 

  19. Lefler, Y., Campagner, D., & Branco, T. (2020). The role of the periaqueductal gray in escape behavior. Current Opinion in Neurobiology, 60, 115–121. https://doi.org/10.1016/j.conb.2019.11.014

    Article  Google Scholar 

  20. Ram, A. (2021). The periaqueductal grey in opioid tolerance and chronic pain. Doctoral Dissertation, Utah State University, All graduate theses and dissertations, 8142

  21. Godoi, M. M., Junior, H. Z., da Cunha, J. M., & Zanoveli, J. M. (2020). Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception. Pharmacology Biochemistry and Behavior, 194, 172938. https://doi.org/10.1016/j.pbb.2020.172938

    Article  Google Scholar 

  22. Khajei, S., Mirnajafi-Zadeh, J., Sheibani, V., Ahmadi-Zeidabadi, M., Masoumi-Ardakani, Y., Rajizadeh, M. A., & Esmaeilpour, K. (2021). Electromagnetic field protects against cognitive and synaptic plasticity impairment induced by electrical kindling in rats. Brain Research Bulletin, 171, 75–83. https://doi.org/10.1016/j.brainresbull.2021.03.013

    Article  Google Scholar 

  23. (2011) Arle, J., & Shils, J. L. (Eds). Essential neuromodulation. Academic Press, Cambridge, USA. https://doi.org/10.1016/C2009-0-61346-5

  24. Öner, M., & Deveci Kocakoç, İ. (2017). JMASM 49: a compilation of some popular goodness of fit tests for normal distribution: their algorithms and MATLAB codes (MATLAB). Journal of Modern Applied Statistical Methods, 16(2), 547. https://doi.org/10.22237/jmasm/1509496200

    Article  Google Scholar 

  25. Wei, J., Chen, T., Liu, G. Y., & Yang, J. M. (2016). Higher-order multivariable polynomial regression to estimate human affective states. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep23384

    Article  Google Scholar 

  26. Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

    Article  Google Scholar 

  27. Gupta, A., Sharma, A., & Goel, A. (2017). Review of regression analysis models. International Journal of Engineering Research and Technology, 6(08), 58–61. https://doi.org/10.17577/IJERTV6IS080060

    Article  Google Scholar 

  28. Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106

    Article  MathSciNet  Google Scholar 

  29. Farakhor, S., Shalchyan, V., & Daliri, M. R. (2019). Adaptation effects of medial forebrain bundle micro-electrical stimulation. Bioengineered, 10(1), 78–86. https://doi.org/10.1080/21655979.2019.1599628

    Article  Google Scholar 

  30. Job, R. S., & Dalziel, J. (2000). Defining fatigue as a condition of the organism and distinguishing it from habituation, adaptation, and boredom. In P. A. Hancock & P. A. Desmond (Eds.), Stress, workload, and fatigue (pp. 466–476). CRC Press, Boca Raton, USA: Lawrence Erlbaum Associates Publishers. https://doi.org/10.1201/b12791

    Chapter  Google Scholar 

  31. Mason, P. A., & Milner, P. M. (1986). Temporal characteristics of electrical self-stimulation reward: Fatigue rather than adaptation. Physiology & Behavior, 36(5), 857–860. https://doi.org/10.1016/0031-9384(86)90443-9

    Article  Google Scholar 

  32. McMorris, T., Barwood, M., Hale, B. J., Dicks, M., & Corbett, J. (2018). Cognitive fatigue effects on physical performance: A systematic review and meta-analysis. Physiology & Behavior, 188, 103–107. https://doi.org/10.1016/j.physbeh.2018.01.029

    Article  Google Scholar 

  33. Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The effects of mental fatigue on physical performance: A systematic review. Sports Medicine, 47(8), 1569–1588. https://doi.org/10.1007/s40279-016-0672-0

    Article  Google Scholar 

  34. Parto Dezfouli, M., & Daliri, M. R. (2015). The effect of adaptation on the tuning curves of rat auditory cortex. PLoS ONE, 10(2), e0115621. https://doi.org/10.1371/journal.pone.0115621

    Article  Google Scholar 

  35. Peper, A. (2009). Intermittent adaptation. Pharmacopsychiatry, 42(S 01), S129–S143. https://doi.org/10.1055/s-0029-1202848

    Article  Google Scholar 

  36. Clerke, J. A., Congiu, M., & Mameli, M. (2021). Neuronal adaptations in the lateral habenula during drug withdrawal: Preclinical evidence for addiction therapy. Neuropharmacology, 192, 108617. https://doi.org/10.1016/j.neuropharm.2021.108617

    Article  Google Scholar 

  37. Tykocinski, M., Shepherd, R. K., & Clark, G. M. (1995). Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. Hearing Research, 88(1–2), 124–142. https://doi.org/10.1016/0378-5955(95)00108-G

    Article  Google Scholar 

  38. Forbes, A., & Rice, L. H. (1929). Quantitative studies of the nerve impulse: IV Fatigue in peripheral nerve. American Journal of Physiology-Legacy Content, 90(1), 119–145. https://doi.org/10.1152/ajplegacy.1929.90.1.119

    Article  Google Scholar 

  39. Newland, P., Starkweather, A., & Sorenson, M. (2016). Central fatigue in multiple sclerosis: A review of the literature. The Journal of Spinal Cord Medicine, 39(4), 386–399. https://doi.org/10.1080/10790268.2016.1168587

    Article  Google Scholar 

  40. Lorist, M. M., & Tops, M. (2003). Caffeine, fatigue, and cognition. Brain and Cognition, 53(1), 82–94. https://doi.org/10.1016/S0278-2626(03)00206-9

    Article  Google Scholar 

  41. McIntire, L. K., McKinley, R. A., Nelson, J. M., & Goodyear, C. (2017). Transcranial direct current stimulation versus caffeine as a fatigue countermeasure. Brain Stimulation, 10(6), 1070–1078. https://doi.org/10.1016/j.brs.2017.08.005

    Article  Google Scholar 

  42. Thiel, C. M., & Fink, G. R. (2007). Visual and auditory alertness: Modality-specific and supramodal neural mechanisms and their modulation by nicotine. Journal of Neurophysiology, 97(4), 2758–2768. https://doi.org/10.1152/jn.00017.2007

    Article  Google Scholar 

  43. Haenggeli, A., Zhang, J. S., Fischer, M. W., Pelizzone, M., & Rouiller, E. M. (1998). Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: Effects of stimulation at high rates. Audiology, 37(6), 353–371. https://doi.org/10.3109/00206099809072989

    Article  Google Scholar 

  44. Cohen, E. D. (2009). Effects of high-level pulse train stimulation on retinal function. Journal of Neural Engineering, 6(3), 035005. https://doi.org/10.1088/1741-2560/6/3/035005

    Article  Google Scholar 

  45. Kilgore, K. L., & Bhadra, N. (2004). Nerve conduction block utilising high-frequency alternating current. Medical and Biological Engineering and Computing, 42, 394–406. https://doi.org/10.1007/BF02344716

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank “Kerman Neuroscience Research Center” for their full support in terms of providing the financial grant and the required instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Afarinesh or Vahid Sheibani.

Ethics declarations

Conflict of interest

The authors declare that no conflicting interests exist in the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajei, S., Khorasani, A., Afarinesh, M.R. et al. Movement Trend Alterations in the Periaqueductal Gray (PAG)-Employed Ratbot Navigation Are Correlated with Stimulation Parameters. J Bionic Eng 21, 866–876 (2024). https://doi.org/10.1007/s42235-023-00464-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00464-5

Keywords

Navigation