Skip to main content
Log in

Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Medium on Modified and Carbonized Carbon Material Formed from Lignin under the Action of Microwave Radiation

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The adsorption activity of a carbon material based on lignin modified with iron salts and carbonized under the influence of microwave radiation in relation to 2,4-dichlorophenoxyacetic acid (2,4-D) from an aqueous medium was studied. The kinetic parameters of the adsorption process were determined. Based on the results obtained, the possibility of using the test material as an adsorbent of biologically active organic compounds was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Xu, C. and Ferdosian, F., Conversion of Lignin into Bio-Based Chemicals and Materials, Berlin: Springer, 2017.

    Book  Google Scholar 

  2. Arapova, O.V., Chistyakov, A.V., Tsodikov, M.V., and Moiseev, I.I., Pet. Chem., 2020, vol. 60, no. 3, p. 227. https://doi.org/10.1134/S0965544120030044

    Article  CAS  Google Scholar 

  3. Liu, B., Guo, N., Wang, Z., Wang, Y., Hao, X., Yang, Z., and Yang, Q., J. Environ. Chem. Eng., 2022, vol. 10, no. 3, p. 107472.

    Article  CAS  Google Scholar 

  4. Kuśmierek, K., Szala, M., and Świątkowski, A., J. Taiwan Inst. Chem. Eng., 2016, vol. 63, p. 371.

    Article  Google Scholar 

  5. Simonova, V.V., Shendrik, T.G., and Kuznetsov, B.N., J. Sib. Fed. Univ., Chem., 2010, vol. 3, no. 4, p. 340.

    Google Scholar 

  6. Sudakova, I.G., Levdanskii, A.V., and Kuznetsov, B.N., J. Sib. Fed. Univ., Chem., 2021, vol. 14, no. 2, p. 263.

    Google Scholar 

  7. Feofilova, E.P. and Mysyakina, I.S., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, p. 573. https://doi.org/10.1134/S0003683816060053

    Article  CAS  Google Scholar 

  8. Binh, Q.A. and Nguyen, H.H., Bioresour. Technol., 2020, vol. 11, p. 100520.

    Google Scholar 

  9. Hazrin, H.M.M.N., Lim, A., Li, C., Chew, J.J., and Sunarso, J., Mater. Today: Proc., 2022, vol. 64, p. 1557.

    Google Scholar 

  10. Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J.T.N., Tsang, D.C.W., and Hunta, A.J., Bioresour. Technol., 2019, vol. 272, p. 570.

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Serrano, E., Cordero, T., Rodriguez-Mirasol, J., Cotoruelo, L., and Rodriguez, J.J., Water Res., 2004, vol. 38, no. 13, p. 3034.

    Article  Google Scholar 

  12. Mahmoudi, K., Hamdi, N., Kriaa, A., and Srasra, E., Russ. J. Phys. Chem. A, 2012, vol. 86, p. 1294.

    Article  CAS  Google Scholar 

  13. Ge, Y., Xiao, D., Li, Z., and Cui, X., J. Mater. Chem., 2014, vol. 2, no. 7, p. 2136.

    Article  CAS  Google Scholar 

  14. Jin, C., Zhang, X., Xin, J., Liu, G., Wu, G., Kong, Z., and Zhang, J., ACS Sustainable Chem. Eng., 2017, vol. 5, p. 4086.

    Article  CAS  Google Scholar 

  15. Wang, X., Zhang, Y., Hao, C., Dai, X., Zhoua, Z., and Si, N., RSC Adv., 2014, vol. 4, no. 53, p. 28156.

    Article  CAS  Google Scholar 

  16. Parajuli, D., Adhikari, C.R., Kuriyama, M., Kawakita, H., Ohto, K., Inoue, K., and Funaoka, M., Ind. Eng. Chem. Res., 2005, vol. 45, no. 1, p. 8.

    Article  Google Scholar 

  17. Voskoboinikov, I.V., Shevchenko, A.O., and Shchelokov, V.M., Lesn. Vestn., 2012, no. 8.91, p. 56.

    Google Scholar 

  18. Sridevi, V., Surya, D.V., Reddy, B.R., Shah, M., Gautam, R., Kumar, T.H., and Basak, T., Int. J. Hydrogen Energy, 2023 (in press). https://doi.org/10.1016/j.ijhydene.2023.06.186

  19. Kustov, L.M., Kustov, A.L., and Salmi, T., Mendeleev Commun., 2022, vol. 32, no. 1, p. 1.

    Article  CAS  Google Scholar 

  20. Tsodikov, M.V., Chistyakov, A.V., Konstantinov, G.I., Borisov, R.S., Bondarenko, G.N., and Arapova, O.V., Pet. Chem., 2021, vol. 61, no. 7, p. 721. https://doi.org/10.1134/S0965544121070070

    Article  CAS  Google Scholar 

  21. Garabrant, D.H. and Philbert, M.A., Crit. Rev. Toxicol., 2002, vol. 32, no. 4, p. 233.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, X., Wang, B., Kang, J., Shen, J., Yan, P., Li, X., Yuan, L., Zhao, S., Cheng, Y., Li, Y., Zuo, J., and Chen, Z., Sep. Purif. Technol., 2022, vol. 299, p. 121777.

    Article  CAS  Google Scholar 

  23. Zharova, P., Arapova, O.V., Konstantinov, G.I., Chistyakov, A.V., and Tsodikov, M.V., J. Chem., 2019, vol. 2019, p. 6480354.

    Article  Google Scholar 

  24. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals for Adsorption Technique), Moscow: Khimiya, 1984, part 1, chap. 8.

  25. Tsodikov, M.V., RF Inventor’s Certificate no. 2724252, Byull. Izobret., 2020, no. 13.

  26. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., and Maurin, G., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, New York: Academic Press, 2014, chap. 14, p. 626.

    Google Scholar 

  27. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii (IR-Spectra of the Main Classes of Organic Compounds), Moscow: Moscow State Univ., 2012.

  28. Paredes-garcía, V., Toledo, N., Denardin, J., Venegasyazigi, D., Cruz, C., Spodine, E., and Luo, Z., J. Chil. Chem. Soc., 2013, vol. 58, p. 2011.

    Article  Google Scholar 

  29. Shahvan, T., Chem. Eng. Res. Des., 2015, vol. 96, p. 172.

    Article  Google Scholar 

  30. Rakishev, A.K., Vedenyapina, M.D., Kulaishin, S.A., and Kurilov, D.V., Solid Fuel Chem., 2021, vol. 55, p. 117. https://doi.org/10.3103/S0361521921020063

    Article  CAS  Google Scholar 

  31. Kurmysheva, A.Yu., Vedenyapina, M.D., and Kulaishin, S.A., Solid Fuel Chem., 2022, vol. 56, p. 441. https://doi.org/10.3103/S0361521922060064

    Article  CAS  Google Scholar 

  32. Shahvan, T., J. Environ. Chem. Eng., 2014, vol. 2, p. 1001.

    Article  Google Scholar 

  33. Vedenyapina, M.D., Sharifullina, L.R., Kulaishin, S.A., Strel’tsova, E.D., Vedenyapin, A.A., and Lapidus, A.L., Solid Fuel Chem., 2018, vol. 52. p. 53. https://doi.org/10.3103/S0361521918010111

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Advanced Catalytic Technologies of the Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences for studying the textural characteristics of the samples and to the Center for Collective Use of the Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences for studying the composition of the surface groups of the samples.

Funding

The work on the synthesis of the adsorbent sample was carried out within the framework of a state assignment at the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tsodikov, M. D. Vedenyapina, S. A. Kulaishin, A. V. Chistyakov, G. I. Konstantinov or A. Yu. Kurmysheva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsodikov, M.V., Vedenyapina, M.D., Kulaishin, S.A. et al. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Medium on Modified and Carbonized Carbon Material Formed from Lignin under the Action of Microwave Radiation. Solid Fuel Chem. 57 (Suppl 1), S12–S19 (2023). https://doi.org/10.3103/S0361521923070091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521923070091

Keywords:

Navigation