Skip to main content
Log in

Comparative Modeling of the 2012b Outburst of Supernova 2009ip

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The September 2012 outburst of the type IIn supernova 2009ip was simulated using two independent codes, STELLA and FRONT. The \(UBVRI\) light curves obtained agree well with one another and with observational data. Special attention is given to the dynamics of the emerging dense shell, which determines the luminosity of the object and is used for the direct method of determining the distance to the supernova. Two-dimensional spectral radiation-hydrodynamics computations of the SN 2009ip model were carried out, which confirmed the conclusion about the stability of this shell on the times scales of the method application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. D. A. Badjin and S. I. Glazyrin, Mon. Not. R. Astron. Soc. 507, 1492 (2021).

    Article  ADS  Google Scholar 

  2. D. A. Badjin, S. I. Glazyrin, K. V. Manukovskiy, and S. I. Blinnikov, Mon. Not. R. Astron. Soc. 459, 2188 (2016).

    Article  ADS  Google Scholar 

  3. P. V. Baklanov, S. I. Blinnikov, M. Sh. Potashov, and A. D. Dolgov, JETP Lett. 98, 432 (2013).

    Article  ADS  Google Scholar 

  4. S. I. Blinnikov, Astron. Lett. 22, 79 (1996).

    ADS  Google Scholar 

  5. S. I. Blinnikov, R. Eastman, O. S. Bartunov, V. A. Popolitov, and S. E. Woosley, Astrophys. J. 496, 454 (1998).

    Article  ADS  Google Scholar 

  6. S. I. Blinnikov, F. K. Ropke, E. I. Sorokina, M. Gieseler, M. Reinecke, C. Travaglio, W. Hillebrandt, and M. Stritzinger, Astron. Astrophys. 453, 229 (2006).

    Article  ADS  Google Scholar 

  7. S. Blinnikov, M. Potashov, P. Baklanov, and A. Dolgov, JETP Lett. 96, 153 (2012).

    Article  ADS  Google Scholar 

  8. R. Chevalier and J. M. Blondin, Astrophys. J. 444, 312 (1995).

    Article  ADS  Google Scholar 

  9. N. N. Chugai, Astron. Lett. 48, 442 (2022).

    Article  ADS  Google Scholar 

  10. B. Dubroca and J.-L. Feugeas, C.R. Acad. Sci., Ser. Math. 329, 915 (1999).

    Google Scholar 

  11. D. B. Friend and J. I. Castor, Astrophys. J. 272, 259 (1983).

    Article  ADS  Google Scholar 

  12. A. H. Karp, G. Lasher, K. L. Chan, and E. E. Salpeter, Astrophys. J. 214, 161 (1977).

    Article  ADS  Google Scholar 

  13. A. Kashi, N. Soker, and N. Moskovitz, Mon. Not. R. Astron. Soc. 436, 2484 (2013).

    Article  ADS  Google Scholar 

  14. C. S. Kochanek, D. M. Szczygieł, and K. Z. Stanek, Astrophys. J. 758, 142 (2012).

    Article  ADS  Google Scholar 

  15. A. Kozyreva, L. Shingles, A. Mironov, P. Baklanov, and S. Blinnikov, Mon. Not. R. Astron. Soc. 499, 4312 (2020).

    Article  ADS  Google Scholar 

  16. R. L. Kurucz, Rev. Mex. Astron. Astrofis. 23 (1992).

  17. C. Levermore, J. Quant. Spectrosc. Rad. Transfer 31, 149 (1984).

    Article  ADS  Google Scholar 

  18. M. S. Liou, J. Comput. Phys. 160, 623 (2000).

    Article  ADS  Google Scholar 

  19. R. Margutti, D. Milisavljevic, A. M. Soderberg, R. Chornock, B. A. Zauderer, K. Murase, C. Guidorzi, N. E. Sanders, et al., Astrophys. J. 780, 21 (2014).

    Article  ADS  Google Scholar 

  20. J. Maza, M. Hamuy, R. Antezana, L. Gonzalez, P. Lopez, S. Silva, G. Folatelli, D. Iturra, et al., Centr. Bureau Electron. Telegrams 1928, 1 (2009).

    ADS  Google Scholar 

  21. A. McDowell, P. Duffell, and D. Kasen, Am. Astron. Soc. Meet. Abstr. 229, 434 (2017).

    Google Scholar 

  22. T. J. Moriya, S. I. Blinnikov, N. Tominaga, N. Yoshida, M. Tanaka, K. Maeda, and K. Nomoto, Mon. Not. R. Astron. Soc. 428, 1020 (2013).

    Article  ADS  Google Scholar 

  23. A. Pastorello, E. Cappellaro, C. Inserra, S. J. Smartt, G. Pignata, S. Benetti, S. Valenti, M. Fraser, et al., Astrophys. J. 767, 1 (2013).

    Article  ADS  Google Scholar 

  24. P. A. Pinto and R. G. Eastman, Astrophys. J. 530, 757 (2000).

    Article  ADS  Google Scholar 

  25. M. Potashov, S. Blinnikov, P. Baklanov, and A. Dolgov, Mon. Not. R. Astron. Soc. Lett. 431, L98 (2013).

    Article  ADS  Google Scholar 

  26. M. Sh. Potashov and A. V. Yudin, KIAM Preprint No. 82 (Keldysh Inst. Appl. Math., Moscow, 2022).

    Google Scholar 

  27. M. Sh. Potashov, S. I. Blinnikov, and E. I. Sorokina, Astron. Lett. 47, 204 (2021a).

    Article  ADS  Google Scholar 

  28. M. Sh. Potashov et al., KIAM Preprint No. 87 (Keldysh Inst. Appl. Math., Moscow, 2021b).

    Google Scholar 

  29. J. L. Prieto, J. Brimacombe, A. J. Drake, and S. Howerton, Astrophys. J. Lett. 763, L27 (2013).

    Article  ADS  Google Scholar 

  30. Yu. Ralchenko et al., NIST Atomic Spectra Database 2006. http://physics.nist.gov/asd3.

  31. M. N. Saha, Proc. R. Soc. London 99, 135 (1921).

    ADS  Google Scholar 

  32. M. A. Skinner, J. C. Dolence, A. Burrows, D. Radice, and D. Vartanyan, Astrophys. J. Suppl. Ser. 241, 7 (2019).

    Article  ADS  Google Scholar 

  33. V. V. Sobolev, Moving Envelopes of Stars (Harvard Univ., Cambridge, 1960; Leningr. Gos. Univ., Leningrad, 1947).

  34. E. I. Sorokina and S. I. Blinnikov, arXiv astro-ph/0212187 (2002).

  35. E. Urvachev and S. Glazyrin, Math. Model. Comput. Simul. 14, 633 (2022).

    Article  MathSciNet  Google Scholar 

  36. E. Urvachev, D. Shidlovski, N. Tominaga, S. Glazyrin, and S. Blinnikov, Astrophys. J. Suppl. Ser. 256, 8 (2021).

    Article  ADS  Google Scholar 

  37. E. M. Urvachev, S. I. Blinnikov, S. I. Glazyrin, and P. V. Baklanov, Astron. Lett. 48, 20 (2022).

    Article  ADS  Google Scholar 

  38. N. M. H. Vaytet, E. Audit, B. Dubroca, and F. Delahaye, J. Quant. Spectrosc. Radiat. Transfer 112, 1323 (2011).

    Article  ADS  Google Scholar 

  39. D. A. Verner et al., arXiv astro-ph/9601009 (1996).

  40. A. Vlasis, L. Dessart, and E. Audit, Mon. Not. R. Astron. Soc. 458, 1253 (2016).

    Article  ADS  Google Scholar 

  41. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

Download references

ACKNOWLEDGMENTS

We thank the anonymous referees for their valuable remarks that allowed the SN 2009ip model and the content of the paper to be improved.

Funding

The work of E. M. Urvachev, S. I. Glazyrin, and D. S. Shidlovski on the development of the FRONT code and the simulations of SN 2009ip was supported by RSF grant no. 19-12-00229. The work of S. I. Blinnikov on the analysis of the light curves was supported by RSF grant no. 21-11-00362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Urvachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urvachev, E.M., Blinnikov, S.I., Glazyrin, S.I. et al. Comparative Modeling of the 2012b Outburst of Supernova 2009ip. Astron. Lett. 49, 454–464 (2023). https://doi.org/10.1134/S1063773723080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723080054

Keywords:

Navigation