Skip to main content
Log in

Strong Scattering Effects in the Emission of Soft Gamma-Ray Bursts

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

When a light beam enters a scattering-dominated medium, the radiation is isotropized. Part of the radiation goes backwards, leading to non-monotonicity in the radiation energy density profile inside this medium. There arises a local maximum at which the energy density at a scattering albedo \({\sim}1\) is severalfold greater than that without scattering at the same extinction. This effect is studied numerically in one-dimensional and two-dimensional simulations. It is demonstrated that a local maximum of the radiation energy density arises in the medium, whose value depends on the optical depth of the region. This effect can manifest itself, for example, when the radiation from a gamma-ray burst (GRB) enters heated regions in the interstellar medium. The presence of scattering in the GRB radiation generation region, near the front of strong shocks, affects the radiation pattern. The structure of such shocks is remarkable for the presence of a preshock preheating tail. Strong scattering in this region leads to the escape of a significant fraction of the radiation sideways and backwards in the shock reference frame, forming additional tails in the angular distribution of GRB radiation after the relativistic transformation to the laboratory frame. This effect is also studied numerically in three-dimensional simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  2. A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, et al., Astrophys. J. 703, 1249 (2009).

    Article  ADS  Google Scholar 

  3. S. I. Blinnikov et al., Sov. Astron. Lett. 10, 177 (1984).

    ADS  Google Scholar 

  4. S. I. Blinnikov, V. S. Imshennik, D. K. Nadezhin, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov. Astron. 34, 595 (1990).

    ADS  Google Scholar 

  5. S. I. Blinnikov, D. K. Nadyozhin, N. I. Kramarev, and A. V. Yudin, Astron. Rep. 65, 631 (2021).

    Article  ADS  Google Scholar 

  6. S. I. Blinnikov, A. Yudin, N. Kramarev, and M. Potashov, Particles 5, 198 (2022).

    Article  Google Scholar 

  7. N. G. Bochkarev, Sov. Astron. Lett. 13, 424 (1987).

    ADS  Google Scholar 

  8. Z. Bosnjak, R. Barniol Duran, and A. Peér, Galaxies 10, 38 (2022).

    Article  ADS  Google Scholar 

  9. O. Bromberg, E. Nakar, T. Piran, and R. Sari, Astrophys. J. 740, 100 (2011).

    Article  ADS  Google Scholar 

  10. S. Chandrasekhar, Proc. Natl. Acad. Sci. U. S. A. 44, 933 (1958).

    Article  ADS  Google Scholar 

  11. S. Chandrasekhar, Radiative Transfer (Courier Corp., New York, 1960).

    Google Scholar 

  12. K. F. Evans, J. Atmos. Sci. 55, 429 (1998).

    Article  ADS  Google Scholar 

  13. D. Finstad, S. De, D. A. Brown, E. Berger, and Ch. M. Biwer, Astrophys. J. Lett. 860, L2 (2018).

    Article  ADS  Google Scholar 

  14. B. D. Ganapol, D. E. Kornreich, J. A. Dahl, D. W. Nigg, S. N. Jahshan, and C. A. Wemple, Nucl. Sci. Eng. 118, 38 (1994).

    Article  ADS  Google Scholar 

  15. B. D. Ganapol and D. E. Kornreich, Transp. Theory Stat. Phys. 24, 89 (1995).

    Article  ADS  Google Scholar 

  16. A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, D. Kocevski, C. A. Wilson-Hodge, et al., Astrophys. J. Lett. 848, L14 (2017).

    Article  ADS  Google Scholar 

  17. R. Harrison, O. Gottlieb, and E. Nakar, Mon. Not. R. Astron. Soc. 477, 2128 (2018).

    Article  ADS  Google Scholar 

  18. J. C. Hayes and M. L. Norman, Astrophys. J. Suppl. Ser. 147, 197 (2003).

    Article  ADS  Google Scholar 

  19. M. M. Kasliwal, E. Nakar, L. P. Singer, D. L. Kaplan, D. O. Cook, A. Van Sistine, R. M. Lau, C. Fremling, et al., Science (Washington, DC, U. S.) 358, 1559 (2017).

    Article  ADS  Google Scholar 

  20. U. Kraus, Am. J. Phys. 68, 56 (2000).

    Article  ADS  Google Scholar 

  21. G. P. Lamb and S. Kobayashi, Mon. Not. R. Astron. Soc. 478, 733 (2018).

    Article  ADS  Google Scholar 

  22. I. Mandel, Astrophys. J. Lett. 853, L12 (2018).

    Article  ADS  Google Scholar 

  23. D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford Univ. Press., New York, 1984)

    Google Scholar 

  24. P. Y. Minaev and A. S. Pozanenko, Mon. Not. R. Astron. Soc. 492, 1919 (2020).

    Article  ADS  Google Scholar 

  25. R. Pincus and K. F. Evans, J. Atmos. Sci. 66, 3131 (2009).

    Article  ADS  Google Scholar 

  26. T. A. Porter, G. Jóhannesson, and I. V. Moskalenko, Astrophys. J. 846, 67 (2017).

    Article  ADS  Google Scholar 

  27. K. A. Postnov and N. I. Shakura, Sov. Astron. Lett. 13, 122 (1987).

    ADS  Google Scholar 

  28. A. S. Pozanenko, P. Yu. Minaev, S. A. Grebenev, and I. V. Chelovekov, Astron. Lett. 45, 710 (2019).

    Article  ADS  Google Scholar 

  29. J. X. Prochaska et al., Astrophys. J. 666, 267 (2007).

    Article  ADS  Google Scholar 

  30. G. B. Rybicki, J. Quant. Spectrosc. Radiat. Transfer 11, 827 (1971).

    Article  ADS  Google Scholar 

  31. F. J. Rivera-Paleo and F. S. Guzman, Mon. Not. R. Astron. Soc. 479, 2796 (2018).

    Article  ADS  Google Scholar 

  32. G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (Wiley-VCH, Weinheim, 1985).

    Book  Google Scholar 

  33. O. S. Salafia and G. Ghirlanda, Galaxies 10, 93 (2022).

    Article  ADS  Google Scholar 

  34. L. Tibaldo, D. Gaggero, and P. Martin, Universe 7, 141 (2021).

    Article  ADS  Google Scholar 

  35. A. Tolstov, S. Blinnikov, Sh. Nagataki, and K. Nomoto, Astrophys. J. 811, 47 (2015).

    Article  ADS  Google Scholar 

  36. N. Tominaga, S. Shibata, and S. I. Blinnikov, Astrophys. J. Suppl. Ser. 219, 38 (2015).

    Article  ADS  Google Scholar 

  37. E. Urvachev, D. Shidlovski, N. Tominaga, S. Glazyrin, and S. Blinnikov, Astrophys. J. Suppl. Ser. 256, 8 (2021).

    Article  ADS  Google Scholar 

  38. J. S. Warsa, Ann. Nucl. Energy 29, 851 (2002).

    Article  Google Scholar 

  39. B. A. Whitney, T. P. Robitaille, J. E. Bjorkman, R. Dong, M. J. Wolff, K. Wood, and J. Hono, Astrophys. J. Suppl. Ser. 207, 30 (2013).

    Article  ADS  Google Scholar 

  40. A. Widmark, M. Korsmeier, and T. Linden, Phys. Rev. Lett. 130, 161002 (2023).

  41. M. Williams, J. Phys. A: Math. Gen. 40, 6407 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their extremely important suggestions.

Funding

This work was supported by RSF grant no. 19-12-00229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Urvachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urvachev, E.M., Shidlovski, D.S., Blinnikov, S.I. et al. Strong Scattering Effects in the Emission of Soft Gamma-Ray Bursts. Astron. Lett. 49, 445–453 (2023). https://doi.org/10.1134/S1063773723080042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723080042

Keywords:

Navigation