Skip to main content
Log in

Optical Identification of Galaxy Clusters among SRG/eROSITA X-ray Sources Based on Photometric Redshift Estimates for Galaxies

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We discuss an algorithm whereby the massive galaxy clusters detected in the SRG/eROSITA all-sky survey are identified and their photometric redshifts are estimated. For this purpose, we use photometric redshift estimates for galaxies and WISE forced photometry. To estimate the algorithm operation quality, we used a sample of 634 massive galaxy clusters from the Planck survey with known spectroscopic redshifts in the range \(0.1<z_{\textrm{spec}}<0.6\). The accuracy of the photometric redshift estimates for this sample is \(\delta z_{\textrm{phot}}/(1+z_{\textrm{phot}})\approx 0.5{\%}\), the fraction of large deviations is 1.3\({\%}\). We show that these large deviations arise mainly from the projections of galaxy clusters or other large-scale structures at different redshifts in the X-ray source field. Measuring the infrared (IR) luminosities of galaxy clusters allows one to estimate the reliability of the optical identification of the clusters detected in the SRG/eROSITA survey and to obtain an additional independent measurement of their total gravitational masses, \(M_{500}\). We show that the masses \(M_{500}\) of the galaxy clusters estimated from their IR luminosity measurements have an accuracy \(\sigma_{\log M_{500}}=0.124\), comparable to the accuracy of the mass estimation for the galaxy clusters from their X-ray luminosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. https://ned.ipac.caltech.edu/

  2. https://nadc.china-vo.org/

REFERENCES

  1. G. O. Abell, H. G. Corwin, Jr., and R. P. Olowin, Astrophys. J. Suppl. Ser. 70, 1 (1989).

    Article  ADS  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XX), Astron. Astrophys. 571, A20 (2014a).

    Google Scholar 

  3. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXIX), Astron. Astrophys. 571, A29 (2014b).

    Article  Google Scholar 

  4. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck Intemediate Results XXVI), Astron. Astrophys. 582, A29 (2015a).

    Google Scholar 

  5. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXXII), Astron. Astrophys. 581, A14 (2015b).

    Google Scholar 

  6. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 594, 38 (2016a).

    Google Scholar 

  7. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck 2015 Results XXIV), Astron. Astrophys. 594, A24 (2016b).

    Google Scholar 

  8. R. Ahumada, C. Allende Prieto, A. Almeida, F. Anders, S. F. Anders, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 233, 2 (2016).

    Google Scholar 

  9. R. Ahumada, C. A. Prieto, A. Almeida, F. Anders, S. F. Anders, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 249, 3 (2020).

    Article  ADS  Google Scholar 

  10. H. Böhringer, P. Schuecker, L. Guzzo, C. A. Collins, W. Voges, R. G. Cruddace, et al., Astron. Astrophys. 425, 367 (2004).

    Article  ADS  Google Scholar 

  11. G. Bruzual and S. Charlot, Mon. Not. R. Astron. Soc. 344, 1000 (2003).

    Article  ADS  Google Scholar 

  12. R. A. Burenin, A. Vikhlinin, A. Hornstrup, H. Ebeling, H. Quintana, and A. Mescheryakov, Astrophys. J. Suppl. Ser. 172, 561 (2007).

    Article  ADS  Google Scholar 

  13. R. A. Burenin, Astron. Lett. 43, 507 (2017).

    Article  ADS  Google Scholar 

  14. R. A. Burenin, Astron. Lett. 48, 153 (2022)].

    Article  ADS  Google Scholar 

  15. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubino-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  16. R. A. Burenin, I. F. Bikmaev, M. R. Gilfanov, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, I. A. Zaznobin, E. N. Irtuganov, N. S. Lyskova, P. S. Medvedev, A. V. Meshcheryakov, A. V. Moiseev, S. Yu. Sazonov, A. A. Starobinsky, R. A. Sunyaev, et al., Astron. Lett. 47, 443 (2021).

    Article  ADS  Google Scholar 

  17. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, et al., arXiv:1612.05560 (2016).

  18. G. Desprez, S. Paltani, J. Coupon, I. Almosallam, A. Alvarez-Ayllon, et al., Astron. Astrophys. 644, A31 (2020).

    Article  Google Scholar 

  19. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  20. J. M. Dickey and F. J. Lockman, Ann. Rev. Astron. Astrophys. 28, 215 (1990).

    Article  ADS  Google Scholar 

  21. H. Ebeling, A. C. Edge, and J. P. Henry, Astrophys. J. 533, 668 (2019).

    Google Scholar 

  22. D. Hernández-Lang, J. J. Mohr, M. Klein, S. Grandis, J.-B. Melin, et al., arXiv: 2210.04666 (2022).

  23. M. Hilton, M. Hasselfield, C. Sifón, N. Battaglia, S. Aiola, et al., Astrophys. J. Suppl. Ser. 235, 20 (2018).

    Article  ADS  Google Scholar 

  24. M. Hilton, C. Sifón, S. Naess, M. Madhavacheril, M. Oguri, et al., Astrophys. J. Suppl. Ser. 253, 3 (2021).

    Article  ADS  Google Scholar 

  25. Z. Hu, Gao Jinghua, Zhou Xu, and Kong Xu, Astrophys. J. Suppl. Ser. 242, 8 (2019).

    Article  ADS  Google Scholar 

  26. Z. Hu, Sui Jipeng, Xue Suijian, Zhou Xu, Ma Jun, et al., arXiv:2203.17035 (2022).

  27. I. M. Khamitov, I. F. Bikmaev, R. A. Burenin, M. V. Glushkov, S. S. Mel’nikov, and A. R. Lyapin, Astron. Lett. 46, 1 (2020).

    Article  ADS  Google Scholar 

  28. M. Klein, J. J. Mohr, S. Desai, H. Israel, S. Allam, et al., Mon. Not. R. Astron. Soc. 474, 3324 (2018).

    Article  ADS  Google Scholar 

  29. F. G. Kopylova and A. I. Kopylov, Astron. Lett. 32, 84 (2006).

    Article  ADS  Google Scholar 

  30. Y.-T. Lin, J. J. Mohr, and S. A. Stanford, Astrophys. J. 610, 745 (2004).

    Article  ADS  Google Scholar 

  31. A. V. Meshcheryakov, V. V. Glazkova, S. V. Gerasimov, R. A. Burenin, and G. A. Khorunzhev, Astron. Lett. 41, 307 (2015).

    Article  ADS  Google Scholar 

  32. C. R. Mullis, B. R. McNamara, H. Quintana, A. Vikhlinin, J. P. Henry, et al., Astrophys. J. 594, 154 (2003).

    Article  ADS  Google Scholar 

  33. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, et al., Astron. Astrophys. 650, 18 (2021).

    Article  Google Scholar 

  34. R. Piffaretti, M. Arnaud, G. W. Pratt, E. Pointecouteau, and J.-B. Melin, Astron. Astrophys. 534, A109 (2011).

    Article  ADS  Google Scholar 

  35. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, M. Becker, et al., Astron. Astrophys. 647, 16 (2021).

    Article  Google Scholar 

  36. E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, et al., Astrophys. J. 785, 33 (2014).

    Article  Google Scholar 

  37. C. L. Sarazin, Rev. Mod. Phys. 58, 1 (1986).

    Article  ADS  Google Scholar 

  38. S. J. Schmidt, A. I. Malz, J. Y. H. Soo, I. A. Almosallam, M. Brescia, et al., Mon. Not. R. Astron. Soc. 499, 1587 (2020).

    ADS  Google Scholar 

  39. A. Streblyanska, R. Barrena, J. A. Rubiño-Martín, R. F. van der Burg, N. Aghanim, et al., Astron. Astrophys. 617, A71 (2018).

    Article  Google Scholar 

  40. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., in The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG Mission, Astron. Astrophys. Spec. Iss. (2021). https://doi.org/10.1051/0004-6361/202141779

    Book  Google Scholar 

  41. G. S. Uskov, S. Yu. Sazonov, I. A. Zaznobin, R. A. Burenin, M. R. Gilfanov, P. S. Medvedev, R. A. Sunyaev, R. A. Krivonos, E. V. Filippova, G. A. Khorunzhev, and M. V. Eselevich, Astron. Lett. 49, 25 (2023).

    Article  ADS  Google Scholar 

  42. A. Vikhlinin, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, et al., Astrophys. J. 692, 1033 (2009a).

    Article  ADS  Google Scholar 

  43. A. Vikhlinin, A. V. Kravtsov, R. A. Burenin, W. R. Forman, A. Hornstrup, et al., Astrophys. J. 692, 1060 (2009b).

    Article  ADS  Google Scholar 

  44. V. S. Vorobyev, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, S. N. Dodonov, R. Ya. Zhuchkov, E. N. Irtuganov, A. V. Mescheryakov, S. S. Melnikov, A. N. Semena, A. Yu. Tkachenko, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 42, 63 (2016).

    Article  ADS  Google Scholar 

  45. Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. Ser. 199, 12 (2012).

    Article  Google Scholar 

  46. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  47. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubiño-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 45, 49 (2019).

    Article  ADS  Google Scholar 

  48. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, and R. A. Sunyaev, Astron. Lett. 46, 79 (2020).

    Article  ADS  Google Scholar 

  49. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, M. V. Eselevich, N. S. Lyskova, P. S. Medvedev, M. R. Gilfanov, and R. A. Sunyaev, Astron. Lett. 47, 61 (2021a).

    Article  ADS  Google Scholar 

  50. I. A. Zaznobin, R. A. Burenin, A. R. Lyapin, G. A. Khorunzhev, V. L. Afanasiev, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, R. I. Uklein, I. F. Bikmaev, I. M. Khamitov, M. R. Gilfanov, N. S. Lyskova, P. S. Medvedev, and R. A. Sunyaev, Astron. Lett. 47, 141 (2021b).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by RSF grant no. 21-12-00210. In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The eROSITA data used in this work were processed using the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaznobin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaznobin, I.A., Burenin, R.A., Meshcheryakov, A.V. et al. Optical Identification of Galaxy Clusters among SRG/eROSITA X-ray Sources Based on Photometric Redshift Estimates for Galaxies. Astron. Lett. 49, 431–444 (2023). https://doi.org/10.1134/S1063773723080066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723080066

Keywords:

Navigation