Skip to main content
Log in

Melt-Blown nonwovens coated with Fe-doped CuO and CuO for antibacterial applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, due to the importance of Melt-Blown nonwoven fabrics (MBNWF) for air purification and public health, nanomaterials of net CuO and Fe-doped in CuO structure were used to create antibacterial properties of MBNWF. The aforementioned nanomaterials were synthesized as an antibacterial agent by hydrothermal method and characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The results showed that CuO and Fe-doped CuO were polycrystallized with a monoclinic nanosheet structure without impurities. Next, the MBNWF were coated with these nanosheets (NSs) in a simple process using an autoclave. Fabric samples were analysed by FESEM to confirm coating performance. The viable Cell Count method was used to test the antibacterial effect of the samples. The results showed that the samples have strong antibacterial properties against Staphylococcus aureus (Gr+) and Escherichia coli (Gr) bacteria strains. In most cases, the inhibition efficiency observed was above 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liu C, Dai Z, Zhou R, Ke Q and Huang C 2019 J. Chem. 2019 1

    Google Scholar 

  2. Hassan M A, Yeom B Y, Wilkie A, Pourdeyhimi B and Khan S A 2013 J. Membr. Sci. 427 336

    Article  CAS  Google Scholar 

  3. Li X, Wang N, Fan G, Yu J, Gao J, Sun G et al 2015 J. Colloid Interface Sci. 439 12

    Article  CAS  Google Scholar 

  4. Shiu B C, Zhang Y, Yuan Q, Lin J H, Lou C W and Li Y 2021 Polymers 13 3773

    Article  CAS  Google Scholar 

  5. Lam T N, Wu C H, Huang S H, Ko W C, Huang Y L, Ma C Y et al 2019 Quantum Beam Sci. 3 20

    Article  CAS  Google Scholar 

  6. Zhang Z, Yu D, Xu X, Li H, Mao T, Zheng C et al 2021 Chin. J. Chem. Eng. 29 383

    Article  CAS  Google Scholar 

  7. Jenkins T L and Little D 2019 NPJ Regen. Med. 4 1

    Article  CAS  Google Scholar 

  8. Wei P, Lou H, Xu X, Xu W, Yang H, Zhang W et al 2021 Appl. Surf. Sci. 539 148195

    Article  CAS  Google Scholar 

  9. Gai X L, Cai Z N, Xing T, Wang F, Li X H, Zhang B et al 2020 Appl. Acoust. 160 107156

    Article  Google Scholar 

  10. Zhang C, Tian W, Li D, Quan L and Zhu C 2018 J. Text. Inst. 109 1254

    Article  CAS  Google Scholar 

  11. Han M C, He H W, Kong W K, Dong K, Wang B Y, Yan X et al 2022 Fibers Polym. 23 1947

    Article  CAS  Google Scholar 

  12. Park D, Kim M, Lee S, Yoon I J, Lee K, Lee M H et al 2019 Adv. Mater. Interfaces 6 1801832

    Article  Google Scholar 

  13. Xiao H, Gui J, Chen G and Xiao C 2015 J. Appl. Polym. Sci. 132 47

    Google Scholar 

  14. Thakur R, Das D and Das A 2014 Fibers Polym. 15 1436

    Article  CAS  Google Scholar 

  15. Akbarizadeh M R, Sarani M and Darijani S 2022 Rend. Lincei Sci. Fis. Nat. 33 613

    Article  Google Scholar 

  16. Kayani Z N, Bashir H, Riaz S and Naseem S 2019 Mater. Res. Bull. 115 121

    Article  CAS  Google Scholar 

  17. Brochocka A and Majchrzycka K 2009 Fibres Text. East. Eur. 17 92

    CAS  Google Scholar 

  18. Delgado-Beleño Y, Martinez-Nuñez C, Cortez-Valadez M, Flores-López N and Flores-Acosta M 2018 Mater. Res. Bull. 99 385

    Article  Google Scholar 

  19. Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F and Maryska J 2016 J. Nanomater. 2016 46

    Google Scholar 

  20. Ren Y, Zhao J and Wang X 2018 Text. Res. J. 88 182

    Article  CAS  Google Scholar 

  21. Zhu X, Dai Z, Xu K, Zhao Y and Ke Q 2019 Macromol. Mater. Eng. 304 1900350

    Article  CAS  Google Scholar 

  22. Subramaniam V D, Prasad S V, Banerjee A, Gopinath M, Murugesan R, Marotta F et al 2019 Drug Chem. Toxicol. 42 84

    Article  CAS  Google Scholar 

  23. Solovev Y V, Prilepskii A Y, Krivoshapkina E F, Fakhardo A F, Bryushkova E A, Kalikina P A et al 2019 Sci. Rep. 9 1

    Article  CAS  Google Scholar 

  24. Kang Y O, Im J N and Park W H 2015 Compos. B. Eng. 75 256

    Article  CAS  Google Scholar 

  25. Łatwińska M, Sójka-Ledakowicz J, Chruściel J and Piórkowski M 2016 Int. J. Polym. Sci. 2016 1

    Article  Google Scholar 

  26. Kim H J, Han S W, Joshi M K and Kim C S 2017 Int. J. Polym. Mater. 66 514

    Article  CAS  Google Scholar 

  27. Zhang S, Dong H, He R, Wang N, Zhao Q, Yang L et al 2022 Int. J. Biol. Macromol. 207 100

    Article  CAS  Google Scholar 

  28. Han M C, Cai S Z, Wang J and He H W 2022 Polymers 14 2952

    Article  CAS  Google Scholar 

  29. Grigore M E, Biscu E R, Holban A M, Gestal M C and Grumezescu A M 2016 Pharmaceuticals 9 75

    Article  Google Scholar 

  30. Kafi Ahmadi L and Khademinia S 2022 Prog. Physi. Appl. Mater. 2 83

    Google Scholar 

  31. Jadhav S, Gaikwad S, Nimse M and Rajbhoj A 2011 J. Clust. Sci. 22 121

    Article  CAS  Google Scholar 

  32. Paul D and Neogi S 2019 Mater. Res. Express 6 055004

    Article  CAS  Google Scholar 

  33. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G and Rahuman A A 2012 Mater. Lett. 71 114

    Article  CAS  Google Scholar 

  34. Kwak E L, Bang Y J, Camidge D R, Shaw A T, Solomon B, Maki R G et al 2010 N. Engl. J. Med. 363 1693

    Article  CAS  Google Scholar 

  35. Kumar S, Ahlawat W, Kumar R and Dilbaghi N 2015 Biosens. Bioelectron. 70 498

    Article  CAS  Google Scholar 

  36. Khaleghi H and Ehsani M 2022 Appl. Phys. A 128 1

    Article  Google Scholar 

  37. Swatsitang E, Karaphun A and Putjuso T 2020 Phys. B: Condens. 583 412044

    Article  CAS  Google Scholar 

  38. Swatsitang E, Karaphun A, Phokha S, Hunpratub S and Putjuso T 2017 J. Sol-Gel Sci. Technol. 83 382

    Article  CAS  Google Scholar 

  39. Mirhosseini M and Houshmand Marvasti S 2017 Iran. J. Med. Microbiol. 11 125

    Google Scholar 

  40. Jerin V, Remya R, Thomas M and Varkey J T 2019 Mater. Today: Proc. 9 27

    Google Scholar 

  41. Akhlaghian F, Souri B and Mohamadi Z 2017 AET 3 67

    Google Scholar 

  42. Mahapatra A, Mishra B and Hota G 2013 J. Hazard. Mater. 258 116

    Article  Google Scholar 

  43. Sobhanardakani S, Jafari A, Zandipak R and Meidanchi A 2018 Process Saf. Environ. Prot. 120 348

    Article  CAS  Google Scholar 

  44. Li Y, Yin H, Cai Y, Luo H, Yan C and Dang Z 2023 Chemosphere 311 136976

    Article  CAS  Google Scholar 

  45. Sathiyavimal S, Vasantharaj S, Kaliannan T and Pugazhendhi A 2020 Carbohydr. Polym. 241 116243

    Article  CAS  Google Scholar 

  46. Syame S M, Mohamed W, Mahmoud R K and Omara S T 2017 Orient J. Chem. 33 2959

    Article  CAS  Google Scholar 

  47. Ebrahim-Saraie H S, Heidari H, Rezaei V, Mortazavi S M J and Motamedifar M 2018 Pharm. Sci. 24 213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Ehsani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi, H., Ehsani, M.H. Melt-Blown nonwovens coated with Fe-doped CuO and CuO for antibacterial applications. Bull Mater Sci 47, 20 (2024). https://doi.org/10.1007/s12034-023-03080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03080-5

Keywords

Navigation