Skip to main content
Log in

Significantly improved electrochemical performance of the commercial lithium titanate (Li4Ti5O12) achieved by using a novel current collector of cuprous iodide-modified copper foil

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel finding that the electrochemical performance of the commercial lithium titanate (Li4Ti5O12, LTO) can be significantly improved by using a novel current collector of CuI particles modified copper foil is reported for the first time in this work. Firstly, a large number of particles with well-defined shapes were prepared on the commercial copper foil surface via a very simple soaking process, in which the soaking solution contained only CuSO4, H2SO4 and [Bmim]I. As indicated by the XRD and XPS measurements, the particles observed on the surface of the copper foil were identified as CuI particles. That is, CuI particles modified copper foils (denoted as CuI/Cu) were successfully prepared at room temperature. CuI/Cu prepared in the presence of 0.4, 0.6 and 0.8 g of [Bmim]I were nominated as CF (copper foil) a, b and c, respectively. Inconceivably, as compared to the conventional LTO electrode, the LTO electrodes assembled using the newly prepared CFs exhibited a significantly improved electrochemical performance, i.e., all as-prepared CFs showed an evident promoting effect on the electrochemical performance of the traditional LTO electrodes. For instance, the initial discharge capacity (DC) of the LTO electrode assembled using CF b (called electrode b) at 0.2 C was 307 mAh g−1, which was about 1.86 times higher than that of the LTO electrode prepared using the conventional copper foil current collector (165 mAh g−1). Particularly, as the applied current rate was as high as 10 C, the DC value of electrode b (117 mAh g−1), even after 100 cycles, was still about 2.54 times that of the traditional LTO electrode (46 mAh g−1). In this preliminary work, a new method for preparing CuI particles was developed, along with a novel approach to significantly improve the electrochemical properties of the commercial LTO electrode. The method did not require any strong oxidants or reducing agents, nor did it demand any additional energy expenditure during the preparation of CuI particles. Moreover, the approach did not require any changes in the assembly procedure for the LTO electrodes being studied. This work was very meaningful for the development of the CuI-related research field as well as for the electrochemical performance improvement of LTO-based lithium-ion batteries (LIBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sun C, Wang Y-J, Gu H, Fan H, Yang G, Ignaszak A et al 2020 Nano Energy 77 105092

    Article  CAS  Google Scholar 

  2. Liang J, Zhou Z, Zhang Q, Hu X, Peng W, Li Y et al 2021 J. Power Sources 495 229758

    Article  CAS  Google Scholar 

  3. Gao C, Jiang Z, Wang P, Jensen L R, Zhang Y and Yue Y 2020 Nano Energy 74 104868

    Article  CAS  Google Scholar 

  4. Yokokura T J, Qi Z, Wang H, Manikandan P, Pol V G and Rodriguez J R 2022 Carbon Trends 8 100178

    Article  CAS  Google Scholar 

  5. Meng C, Yuan M, Cao B, Lin X, Zhang J, Li A et al 2022 Carbon 192 347

    Article  CAS  Google Scholar 

  6. Jin X, Han Y, Zhang Z, Chen Y, Li J, Yang T et al 2022 Adv. Mater. 34 2109356

    Article  CAS  Google Scholar 

  7. Le S H, Huang C and Grant P S 2019 Nano Energy 61 96

    Article  Google Scholar 

  8. Jin Y, Yu H, Gao Y, He X, White T A and Liang X 2019 J. Power Sources 436 226859

    Article  CAS  Google Scholar 

  9. Tian K, Hui X, Wang H, Zhang Z, Zhang L, Wang C et al 2022 Electrochim. Acta 415 140242

    Article  CAS  Google Scholar 

  10. Hernández-Carrillo R A, Ramos-Sánchez G, Guzmán-González G, García-Gomez N A, González I and Sanchez-Cervantes E M 2018 J. Alloys Compd. 735 1871

    Article  Google Scholar 

  11. Wang H, Wang L, Lin J, Yang J, Wu F, Li L et al 2021 Electrochim. Acta 368 137470

    Article  CAS  Google Scholar 

  12. Temeche E, Buch E, Zhang X, Brandt T, Hintennach A and Laine R M 2021 ACS Appl. Energy Mater. 4 1894

    Article  CAS  Google Scholar 

  13. Hong H-J, Lee S-Y, Kwon S, Kim B-S, Yoon S and Park I-S 2021 J. Alloys Compd. 886 161296

    Article  CAS  Google Scholar 

  14. Lv S-X, Chen Q-L, Song F-X and Li Y-N 2021 Appl. Surf. Sci. 555 149637

    Article  CAS  Google Scholar 

  15. Li X, Huang X, Chen Y, Mei J, Xu W, Wang L et al 2021 Electrochim. Acta 390 138874

    Article  CAS  Google Scholar 

  16. Gong S H, Lee J H, Chun D W, Bae J-H, Kim S-C, Yu S et al 2021 J. Energy Chem. 59 465

    Article  CAS  Google Scholar 

  17. Xiao X, Liu L, Zhang L, Wang Q, Yan H, Zhao B et al 2022 J. Alloys Compd. 897 162744

    Article  CAS  Google Scholar 

  18. Ding K, Gu H, Zheng C, Liu L, Liu L, Yan X et al 2014 Electrochim. Acta 146 585

    Article  CAS  Google Scholar 

  19. Wang C, Wang X, Lin C and Zhao X S 2019 Small 15 1902183

    Article  CAS  Google Scholar 

  20. Feng Y, Liu H, Zhao X and Dong W 2020 J. Phys. Chem. Solids 146 109569

    Article  CAS  Google Scholar 

  21. Peng J, Chen B, Wang Z, Guo J, Wu B, Hao S et al 2020 Nature 586 390

    Article  CAS  Google Scholar 

  22. Wen S, Li Z, Zou C, Zhong W, Wang C, Chen J et al 2021 New J. Chem. 45 10541

    Article  CAS  Google Scholar 

  23. Zhou S, Liu G, Ding N, Shang L, Dang R and Zhang J 2020 Surf. Coat. Technol. 399 126150

    Article  CAS  Google Scholar 

  24. Lee S H, Johnston C and Grant P S 2020 Energy Technol. 8 2000253

    Article  CAS  Google Scholar 

  25. Qin W, Liu H, An J and Wen X 2020 J. Power Sources 479 229090

    Article  CAS  Google Scholar 

  26. Zhu X, Jiang X, Yao X, Leng Y, Wang L and Xue Q 2019 ACS Appl. Mater. Interfaces 11 26880

    Article  CAS  Google Scholar 

  27. Zhang Y, Xiao R, Liao X, Ma Z, Huang Y and Li Q 2020 ChemElectroChem 7 2896

    Article  CAS  Google Scholar 

  28. Toigo C, Frankenberger M, Billot N, Pscherer C, Stumper B, Distelrath F et al 2021 Electrochim. Acta 392 138978

    Article  CAS  Google Scholar 

  29. Chen C-H, Chiu J-M, Shown I and Wang C-H 2022 ACS Omega 7 10205

    Article  CAS  Google Scholar 

  30. Ding K, Zhao J, Sun Y, Chen Y, Wei B, Zhang Y et al 2016 Ceram. Int. 42 19187

    Article  CAS  Google Scholar 

  31. Geng F, Yang L, Dai B, Guo S, Gao G, Xu L et al 2019 Surf. Coat. Technol. 360 269

    Article  CAS  Google Scholar 

  32. Singh N and Taunk M 2020 ChemistrySelect 5 12236

    Article  CAS  Google Scholar 

  33. Li S, Zhang Y, Yang W and Fang X 2019 Adv. Mater. Interfaces 6 1900669

    Article  Google Scholar 

  34. Fang L, Dong S, Shi L and Sun Q 2019 New J. Chem. 43 12744

    Article  CAS  Google Scholar 

  35. Liu P and Hensen E J M 2013 J. Am. Chem. Soc. 135 14032

    Article  CAS  Google Scholar 

  36. Salaha N, Abusorrahb A M, Salahc Y N, Almasoudid M, Baghdadia N, Alshahria A et al 2020 Ceram. Int. 46 27244

    Article  Google Scholar 

  37. Ding K, Okajima T and Ohsaka T 2007 Electrochemistry 75 35

    Article  CAS  Google Scholar 

  38. Ding K, Jia Z, Wang Q, He X, Na T, Tong R et al 2001 J. Electroanal. Chem. 513 67

    Article  CAS  Google Scholar 

  39. Ding K, Han J, Gao X, Zhou L and Qu R 2019 Mater. Chem. Phys. 232 354

    Article  CAS  Google Scholar 

  40. Zhang G Q, Li W, Yang H, Wang Y, Rapole S B, Cao Y et al 2013 J. New Mater. Electrochem. Syst. 16 025

    Article  CAS  Google Scholar 

  41. Fu Z, Chen L, Wan L, Wang F, Du J, Yang X et al 2018 Ionics 24 1579

    Article  CAS  Google Scholar 

  42. Ding K, Zhao J, Zhou J, Zhao Y, Chen Y, Liu L et al 2016 Mater. Chem. Phys. 177 31

    Article  CAS  Google Scholar 

  43. Deng Z, Xu Z, Deng W and Wang X 2022 J. Power Sources 521 230970

    Article  CAS  Google Scholar 

  44. Yi T-F, Liu H, Zhu Y-R, Jiang L-J, Xie Y and Zhu R-S 2012 J. Power Sources 215 258

    Article  CAS  Google Scholar 

  45. Peta K, Bartkowiak T, Galek P and Mendak M 2021 Tribol. Int. 163 107139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21706004), the National Key Research and Development Project (No. 2019YFC1908303), the Innovation Ability Improvement Project of Hebei Province (225A4402D) and the Graduate Student Innovation Ability Training Program of Hebei Normal University (CXZZSS2022060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keqiang Ding or Yanzhi Sun.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Di, M., Shi, F. et al. Significantly improved electrochemical performance of the commercial lithium titanate (Li4Ti5O12) achieved by using a novel current collector of cuprous iodide-modified copper foil. Bull Mater Sci 47, 18 (2024). https://doi.org/10.1007/s12034-023-03097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03097-w

Keywords

Navigation