Skip to main content
Log in

An adaptive FEM for the elastic transmission eigenvalue problem with different elastic tensors and different mass densities

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The elastic transmission eigenvalue problem, arising from the inverse scattering theory, plays a critical role in the qualitative reconstruction methods for elastic media. This paper proposes and analyzes an a posteriori error estimator of the finite element method for solving the elastic transmission eigenvalue problem with different elastic tensors and different mass densities in \(\mathbb {R}^{d}~(d=2,3)\). An adaptive algorithm based on the a posteriori error estimators is designed. Numerical results are provided to illustrate the efficiency of our adaptive algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Cakoni, F., Colton, D., Haddar, H.: Inverse scattering theory and transmission eigenvalues. SIAM, Philadelphia (2016)

    Book  Google Scholar 

  2. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, 4th edn. Springer, Cham (2019)

    Book  Google Scholar 

  3. Charalambopoulos, A., Kirsch, A., Anagnostopoulos, KA., et. al.: The factorization method in inverse elastic scattering from penetrable bodies. Inverse Probl. 23(1), 27 (2006)

  4. Bellis, C., Guzina, B.: On the existence and uniqueness of a solution to the interior transmission problem for piecewise-homogeneous solids. J. Elasticity 101, 29–57 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bellis, C., Cakoni, F., Guzina, B.: Nature of the transmission eigenvalue spectrum for elastic bodies. IMA J. Appl. Math. 78, 895–923 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bao, G., Hu, G., Sun, J., Yin, T.: Direct and inverse elastic scattering from anisotropic media. J. Math. Pures Appl. 117, 263–301 (2018)

    Article  MathSciNet  Google Scholar 

  7. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Problems 26, 045011 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, J., Zhou, A.: Finite element methods for eigenvalue problems. CRC Press, Taylor Francis Group, Boca Raton, London, New York (2016)

    Book  Google Scholar 

  9. Camano, J., Rodriguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem, Calcolo 55(3) (2018) Article 33

  10. Kleefeld, A., Pieronek, L.: Computing interior transmission eigenvalues for homogeneous and anisotropic media, Inverse Probl. 34(10), 105007 (2018)

  11. An, J., Shen, J.: Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem. Comput. Math. Appl. 69, 1132–1143 (2015)

    Article  MathSciNet  Google Scholar 

  12. Mora, D., Vel\(\acute{\rm a}\)squez, I.: A virtual element method for the transmission eigenvalue problem, Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

  13. Yang, Y., Zhang, Y., Bi, H.: A type of adaptive \(C^{0}\) non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Engrg. 360, 112697 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Xie, H., Wu, X.: A multilevel correction method for interior transmission eigenvalue Problem. J. Sci. Comput. 72, 586–604 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gong, B., Sun, J., Turner, T., Zheng, C.: Finite element/holomorphic operator function method for the transmission eigenvalue problem. Math. Comp. 91, 2517–2537 (2022)

    MathSciNet  Google Scholar 

  16. Meng, J., Mei, L.: Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media. Mathematical Models and Methods in Applied Sciences 32(08), 1493–1529 (2022)

    Article  MathSciNet  Google Scholar 

  17. Xi, Y., Ji, X., Geng, H.: A C0IP method of transmission eigenvalues for elastic waves. Journal of Computational Physics 374, 237–248 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ji, X., Sun, J., Li, P.: Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method. Results in Applied Mathematics 5, 100083 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Han, J., Bi, H., Li, H., Zhang, Y.: Mixed methods for the elastic transmission eigenvalue problem. Appl. Math. Comput. 374, 125081 (2020)

    MathSciNet  Google Scholar 

  20. Yang, Y., Han, J., Bi, H.: \(H^{2}\)-conforming methods and two-grid discretizations for the elastic transmission eigenvalue problem. Commun. Comput. Phys. 28, 1366–1388 (2020)

    Article  MathSciNet  Google Scholar 

  21. Bi, H., Han, J., Yang, Y.: Local and parallel finite element schemes for the elastic transmission eigenvalue problem. East Asian Journal on Applied Mathematics 11, 829–858 (2021)

    Article  MathSciNet  Google Scholar 

  22. Chang, W., Lin, W., Wang, J.: Efficient methods of computing interior transmission eigenvalues for the elastic waves. Journal of Computational Physics 407, 109227 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Wang, S., Bi, H.: The finite element method for the elastic transmission eigenvalue problem with different elastic tensors. J. Sci. Comput. 93, 65 (2022)

    Article  MathSciNet  Google Scholar 

  24. Ainsworth, M., Oden, J.T.: A posteriori error estimates in the finite element analysis. Wiley-Inter science, New York (2011)

    Google Scholar 

  25. Babu\(\check{\rm s}\)ka, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

  26. Brenner, S.C.: \(C^{0}\) interior penalty methods. In Frontiers in Numerical Analysis-Durham 2010. Lect. Notes Comput. Sci. Eng. Springer-Verlag, 85, 79–147 (2012)

  27. Morin, P., Nochetto, R.H., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. Shi, Z., Wang, M.: Finite element methods. Science Press, Beijing (2013)

    Google Scholar 

  29. Verf\(\ddot{\rm u}\)rth, R.: A review of a posteriori error estimates and adaptive mesh-refinement techniques, Wiley-Teubner, New York, (1996)

  30. Wu, X., Chen, W.: Error estimates of the finite element method for interior transmission problems. J. Sci. Comput. 57(2), 331–348 (2013)

    Article  MathSciNet  Google Scholar 

  31. Bonnet-Ben Dhia, A.S., Chesnel, L., Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci. Paris Ser. I(349), 647–651 (2011)

    MathSciNet  Google Scholar 

  32. Ciarlet, P.J.: T-coercivity: application to the discretization of Helmholtz-like problems. Comput. Math. Appl. 64, 22–34 (2012)

    Article  MathSciNet  Google Scholar 

  33. Gedicke, J., Carstensen, C.: A posteriori error estimators for convection-diffusion eigenvalue problems. Comput. Methods Appl. Mech. Engrg. 268, 160–177 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Gasser, R., Gedicke, J., Sauter, S.: Benchmark computation of eigenvalues with large defect for non-self-adjoint elliptic differential operators. SIAM J. Sci. Comput. 41(6), A3938–A3953 (2019)

    Article  MathSciNet  Google Scholar 

  35. Dai, X., He, L., Zhou, A.: Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA J. Numer. Anal. 35, 1934–1977 (2014)

    Article  MathSciNet  Google Scholar 

  36. Babu\(\check{\rm s}\)ka, I., Osborn, J.E.: Eigenvalue problems, In: P.G. Ciarlet, J.L. Lions, (Ed.), Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol.2, Elsevier Science Publishers, North-Holand, pp. 640–787 (1991)

  37. Chen, L.: An integrated finite element method package in MATLAB, Technical Report, University of California at Irvine, California, (2009)

  38. Gustafsson, T., McBain, G.D.: scikit-fem: a Python package for finite element assembly. J. Open Source Softw. 5(52), 2369 (2020)

  39. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. pp. 1–120 (2010)

  40. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite element methods (Part1), handbook of numerical analysis, vol. 2, pp. 21–343. Elsevier Science Publishers, North-Holand (1991)

    Google Scholar 

  41. Grisvard, P.: Singularitics in boundary value problems. Springer Verlag, (1992)

  42. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  43. Verf\(\ddot{\rm u}\)rth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80, 641–663 (1998)

  44. Dai, X., Xu., J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

  45. D\(\ddot{\rm o}\)rfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

  46. I. Babu\(\check{\rm s}\)ka, M. Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math. 62, 439–463 (1992)

Download references

Acknowledgements

The authors cordially thank the editor and the referees for their valuable comments and suggestions which led to the improvement of this paper.

Funding

The work was supported by the National Natural Science Foundation of China (Grant Nos. 12261024, 11561014, 11761022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Jon Wilkening

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Bi, H. & Yang, Y. An adaptive FEM for the elastic transmission eigenvalue problem with different elastic tensors and different mass densities. Adv Comput Math 50, 8 (2024). https://doi.org/10.1007/s10444-023-10099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10099-z

Keywords

Mathematics Subject Classification (2010)

Navigation