Skip to main content
Log in

Numerical investigation of thermal behavior during the laser-assisted directed energy deposition process for additive manufacturing

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, we use the laser-assisted directed energy deposition (DED) method on an Inconel 901 plate to carefully examine the thermal behavior of the material. The thermal characteristics of the substrate are explained using both experimental and simulation methods. The laser's power, which ranges from 550 to 750 W, and its scanning speed, which varies between 6.67 and 10.0 mm/s, are among the variables covered by this study. For various laser powers and scanning speeds, we have thoroughly examined the duration of cooling which occurs between the melting and cooling periods in the area situated beneath the top surface of the substrate. Under various circumstances related to laser-assisted DED techniques, variations in temperature under the top surface of the substrate have also been calculated. Our results show that increased heat conduction from the heat source to the substrate causes the molten pool's lifetime to increase with increased laser power and decreased scanning speed. The conditions that operate at 550 W, 8.33 mm/s and 650 W, 10 mm/s have shorter molten pool lifetimes and faster cooling rates, resulting in smoother surfaces than the other conditions. The conclusions drawn from this work highlight how our study offers a deeper understanding of the internal melting and cooling processes that take place within the molten pool during laser-assisted DED methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for additive manufacturing: Trends, opportunities, constructions, and constraints. CIRP Ann. 65(2), 737–760 (2016). https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  2. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 69, 65–89 (2015). https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  3. J. Lin, J. Yang, Y. Huang, X. Lin, Defect identification of metal additive manufacturing parts based on laser-induced breakdown spectroscopy and machine learning. Appl. Phys. B 127(173), 1917–1928 (2021). https://doi.org/10.1007/s00340-021-07725-3

    Article  CAS  Google Scholar 

  4. D.G. Ahn, Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int. J. Prec. Eng. Manuf.-Green Technol. 3(4), 381–395 (2016). https://doi.org/10.1007/s40684-016-0048-9

    Article  Google Scholar 

  5. S.C. Renjith, K. Park, G.E.O. Kremer, A design framework for additive manufacturing: Integration of additive manufacturing capabilities in the early design process. Int. J. Precis. Eng. Manuf. 21(2), 329–345 (2020). https://doi.org/10.1007/s12541-019-00253-3

    Article  Google Scholar 

  6. Z.J. Tang, W.W. Liu, Y.W. Wang, K.M. Saleheen, Z.C. Liu, S.T. Peng, Z. Zhang, H.C. Zhang, A review on in situ monitoring technology for directed energy deposition of metals. Int. J. Adv. Manuf. Technol. 108, 3437–3463 (2020). https://doi.org/10.1007/s00170-020-05569-3

    Article  Google Scholar 

  7. D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int. J. Advan. Manuf. 8(1–4), 465–481 (2015). https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  8. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016). https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  9. A. Dass, A. Moridi, State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings 9(7), 418 (2019). https://doi.org/10.3390/coatings9070418

    Article  CAS  Google Scholar 

  10. J.G. Byun, S.M. Cho, Trend of metal 3D printing by welding. J. Welding Joining 34(4), 1–8 (2016). https://doi.org/10.5781/JWJ.2016.34.4.1

    Article  Google Scholar 

  11. S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 164, 107552 (2019). https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  12. S. Negi, A.A. Nambolan, S. Kapil, P.S. Joshi, K.P. Karunakaran, P. Bhargava, Review on electron beam based additive manufacturing. Rapid Prototyping J. 26(3), 485–498 (2020). https://doi.org/10.1108/RPJ-07-2019-0182

    Article  Google Scholar 

  13. A.N. Jinoop, C.P. Paul, S.K. Mishra, K.S. Bindra, Laser additive manufacturing using directed energy deposition of Inconel 718 wall structures with tailored characteristics. Vacuum 166, 270–278 (2019). https://doi.org/10.1016/j.vacuum.2019.05.027

    Article  ADS  CAS  Google Scholar 

  14. Z. Li, J. Chen, S. Sui, C. Zhong, X. Lu, X. Lin, The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Addit. Manuf. 31, 100941 (2020). https://doi.org/10.1016/j.addma.2019.100941

    Article  CAS  Google Scholar 

  15. D.G. Ahn, Hardfacing Technologies for improvement of wear characteristics of hot working tools: A review. Int. J. Precis. Eng. Manuf. 14(7), 1271–1283 (2013). https://doi.org/10.1007/s12541-013-0174-z

    Article  Google Scholar 

  16. G.H. Loh, E. Pei, D. Harrison, M.D. Monzón, An overview of functionally graded additive manufacturing. Addit. Manuf. 23, 34–44 (2018). https://doi.org/10.1016/j.addma.2018.06.023

    Article  CAS  Google Scholar 

  17. C.S. Maunoury, L. Weiss, O. Perroud, D. Joguet, D. Boisselier, P. Laheurte, An application of differential injection to fabricate functionally graded Ti–Nb alloys using DED-CLAD process. J. Mater. Process. Technol. 268, 171–180 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.018

    Article  CAS  Google Scholar 

  18. M.R.U. Ahsan, A.N.M. Tanvir, G.J. Seo, B. Bates, W. Hawkins, C. Lee, P.K. Liaw, M. Noakes, A. Nycz, D.B. Kim, Heat-treatment effects on a bimetallic additively-manufactured structure (BAMS) of the low-carbon steel and austenitic-stainless steel. Addit. Manuf. 32, 101036 (2020). https://doi.org/10.1016/j.addma.2020.101036

    Article  CAS  Google Scholar 

  19. K. Halmešová, Z. Trojanová, M. Koukolíková, M. Brázda, J. Džugan, W.C. Huang, Effect of laser power on thermal properties of multimaterial structure Inconel 718 and stainless steel 316L processed by directed energy deposition. J. Alloy. Compd. 927, 167082 (2022). https://doi.org/10.1016/j.jallcom.2022.167082

    Article  CAS  Google Scholar 

  20. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  21. J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokia, Hybrid additive and subtractive machine tool—Research and industrial developments. Int. J. Mach. Tools Manuf 101, 79–101 (2016). https://doi.org/10.1016/j.ijmachtools.2015.11.007

    Article  Google Scholar 

  22. J.P.M. Pragana, V.A.M. Cristino, I.M.F. Bragança, C.M.A. Silva, P.A.F. Martins, Integration of forming operations on hybrid additive manufacturing systems based on fusion welding. Int. J. Prec. Eng. Manuf.-Green Technol. 7(3), 595–607 (2020). https://doi.org/10.1007/s40684-019-00152-y

    Article  Google Scholar 

  23. M.P. Sealy, G. Madireddy, R.E. Williams, P. Rao, M. Toursangsaraki, Hybrid processes in additive manufacturing. J. Manuf. Sci. Eng. 140(6), 060801 (2018). https://doi.org/10.1115/1.4038644

    Article  Google Scholar 

  24. F. Li, S. Chen, J. Shi, H. Tian, Y. Zhao, Evaluation and optimization of hybrid manufacturing process combining wire arc additive manufacturing with milling for the fabrication of stiffened panels. Appl. Sci. 7(12), 1233 (2017). https://doi.org/10.3390/app7121233

    Article  CAS  Google Scholar 

  25. D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Laser-based directed energy deposition (DED-LB) of advanced materials. Mater. Sci. Eng. A 840, 142967 (2022). https://doi.org/10.1016/j.msea.2022.142967

    Article  CAS  Google Scholar 

  26. A. Jinoop, C. Paul, K.S. Bindra, Laser-assisted directed energy deposition of nickel super alloys: A review. Proc. Instit. Mech. Eng. L 223(11), 2376–2400 (2019). https://doi.org/10.1177/14644207198526

    Article  Google Scholar 

  27. J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15, 299–305 (1984). https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  28. J. Ma, F. Kong, R. Kovacevic, Finite-element thermal analysis of laser welding of galvanized high-strength steel in a zero-gap lap joint configuration and its experimental verification. Mater. Des. 36, 348–358 (2012). https://doi.org/10.1016/j.matdes.2011.11.027

    Article  CAS  Google Scholar 

  29. A. Temmler, N. Pirch, J. Luo, J.H. Schleifenbaum, C.L. Hafner, Numerical and experimental investigation on formation of surface structures in laser remelting for additive-manufactured Inconel 718. Surf. Coat. Technol. 403, 126370 (2020). https://doi.org/10.1016/j.surfcoat.2020.126370

    Article  CAS  Google Scholar 

  30. Z. Gan, G. Yu, X. He, S. Li, Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 104, 28–38 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049

    Article  CAS  Google Scholar 

  31. S. He, S. Park, D.-S. Shim, C. Yao, W.-J. Zhang, Study on microstructure and abrasive behaviors of inconel 718-WC composite coating fabricated by laser directed energy deposition. J. Market. Res. 21, 2926–2946 (2022). https://doi.org/10.1016/j.jmrt.2022.10.088

    Article  CAS  Google Scholar 

  32. J. Ahn, C. Kim, D. Lee, B. Kim, H.-U. Hong, J.-H. Lee, Superior tensile and fatigue properties of Incoloy 901 repair welds produced by direct energy deposition. J. Market. Res. 19, 3554–3567 (2022). https://doi.org/10.1016/j.jmrt.2022.06.119

    Article  CAS  Google Scholar 

  33. S. He, S. Park, D.-S. Shim, C. Yao, M. Li, S. Wang, Effect of substrate preheating on the microstructure and bending behavior of WC-Inconel 718 composite coating synthesized via laser directed energy deposition. Int. J. Refract Metal Hard Mater. 115, 106299 (2023). https://doi.org/10.1016/j.ijrmhm.2023.106299a

    Article  CAS  Google Scholar 

  34. N. Martin, A. Hor, E. Copin, P. Lours, L. Ratsifandrihana, Fatigue properties of as-built and heat-treated Inconel 625 obtained by the hybridization of two laser-powder based additive processes. Int. J. Fatigue 172, 107650 (2023). https://doi.org/10.1016/j.ijfatigue.2023.107650

    Article  CAS  Google Scholar 

  35. S. Wang, L. Zhu, J.Y.H. Fuh, H. Zhang, W. Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Opt. Lasers Eng. 127, 105950 (2020). https://doi.org/10.1016/j.optlaseng.2019.105950

    Article  Google Scholar 

  36. Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit. Manuf. 1–4, 99–109 (2014). https://doi.org/10.1016/j.addma.2014.09.001

    Article  Google Scholar 

  37. H.C. Tran, Y.L. Lo, Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J. Mater. Process. Technol. 255, 411–425 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.024

    Article  Google Scholar 

  38. Y.C. Wu, W.S. Hwang, C.H. San, C.H. Chang, H.J. Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods. Int. J. Mater. Form.J. Mater. Form. 11, 807–813 (2018). https://doi.org/10.1007/s12289-017-1391-2

    Article  Google Scholar 

Download references

Acknowledgements

This work were supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government (MOTIE) (20214000000480, Development of R&D engineers for combined cycle power plant technologies) and this research was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

Author information

Authors and Affiliations

Authors

Contributions

EA: Methodology, Numerical simulation, Data curation and analysis, and Writing—original draft, Writing—review and editing. HK: Data curation. YJ: Experiment. J-HL: Experiment. HP: Supervision and Funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Heesung Park.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, E., Kwon, H., Joo, Y. et al. Numerical investigation of thermal behavior during the laser-assisted directed energy deposition process for additive manufacturing. Appl. Phys. B 130, 29 (2024). https://doi.org/10.1007/s00340-023-08161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08161-1

Navigation