Skip to main content
Log in

Isotope Composition of Gases of Magmatic and Sedimentary Volcanic Systems: A Review and Comparative Analysis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This article presents the results of a comparative analysis of the isotopic–geochemical composition of gases from igneous/hydrothermal and sedimentary volcanic systems in various regions of the world based on a large amount of literature data and the results of the author’s own research. The purpose of the study is to evaluate the nature of gases of various volcanic systems using known genetic criteria developed as a result of many years of research by a number of scientists from around the world. Data processing for the purpose of comparative analysis and corresponding graphical constructions have been performed using standard computer programs. A comprehensive analysis of the isotopic composition of carbon-rich gases and the isotopic ratio of helium (R/Ra) allows us to draw the following main conclusions: (1) hydrocarbon (HC) gases of the studied volcanic systems have different genetic sources: (a) abiogenic in igneous and carbonic sedimentary volcanic systems, (b) predominantly abiogenic–biogenic in the hydrothermal system, and (c) biogenic (thermogenic–microbial) in sedimentary volcanoes; (2) the content of abiogenic methane in the magmatic/hydrothermal system is insignificant and does not exceed 1%; (3) the isotope composition of CO2 and the ratio of isotopes of radiogenic and air argon (40Ar/36Ar) in igneous volcanoes varies within very narrow limits when compared with sedimentary volcanoes. However, the use of these parameters as an unambiguous genetic criterion is not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Agusto, M., Tassi, F., Caselli, A.T., Vaselli, O., Rouwet, D., Capaccioni, B., Caliro, S., Chiodini, G., and Darrah, T., Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina), J. Volcanol. Geotherm. Res., 2013, vol. 257, pp. 44–56.

    Article  Google Scholar 

  2. Aliyev, A.A. and Kabulova, A.Ya., He isotopes in gases of mud volcanoes in Azerbaijan, Dokl. Akad. Nauk Azerb. SSR, 1980.

    Google Scholar 

  3. Aliyev, A.A., Guliyev, I.S., Dadashov, F.H., and Rakhmanov, R.R., Atlas of the World Mud Volcanoes, Baku: Nafta-Press, 2015.

    Google Scholar 

  4. Allard, P., Dajlevic, D., and Delarue, C., Origin of carbon dioxide emanation from the 1979 Dieng eruption, Indonesia: Implications for the origin of the 1986 Nyos catastrophe, Int. J. Volcanol. Geotherm. Res., 1989, vol. 39, nos. 2–3, pp. 195–206.

    Article  Google Scholar 

  5. Anderson, D.L., The statistics and distribution of helium in the mantle, Int. Geol. Rev., 2000, vol. 42, pp. 289–311.

    Article  Google Scholar 

  6. Baciu, C., Caracausi, A., Etiope, G., and Italiano, F., Mud volcanoes and methane seeps in Romania: Main features and gas flux, Ann. Geophys., 2007, vol. 50, no. 4, pp. 501–511.

    Google Scholar 

  7. Ballentine, C.J. and Burnard, P., Production, release and transport of noble gases in the continental crust, Rev. Mineral. Geochem., 2002, vol. 47, no. 1, pp. 481–538. https://doi.org/10.2138/rmg.2002.47.12

    Article  Google Scholar 

  8. Barry, P.H., Nakagawa, M., Giovannelli, D., de Moor, J.M., Schrenk, M., Seltzer, A.M., Manini, E., Fattorini, D., di Carlo, M., Regoli, F., Fullerton, K., and Lloyd, K.G., Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin, Sci. Data, 2019, vol. 6, no. 1, p. 284.

    Article  Google Scholar 

  9. Barry, P.H., de Moor, J.M., Chiodi, A., Aguilera, F., Hudak, M.R., Bekaert, D.V., Turner, S.J., Curtice, J., Seltzer, A.M., Jessen, G.L., Osses, E., Blamey, J., Amenábar, M.J., Selci, M., Cascone, M., et al., The helium and carbon isotope characteristics of the Andean convergent margin, Front. Earth Sci., 2022, vol. 10, p. 897267. https://doi.org/10.3389/feart.2022.897267

    Article  Google Scholar 

  10. Benavente, O., Tassi, F., Gutierrez, F., Vaselli, O., Aguilera, F., and Reich, M., Origin of fumarolic fluids from Tupungatito volcano (Central Chile): Interplay between magmatic, hydrothermal, and shallow meteoric sources, Bull. Volcanol., 2013, vol. 75, no. 746, pp. 1–15. https://doi.org/10.1007/s00445-013-0746-x

    Article  Google Scholar 

  11. Bergfeld, D., Lowenstern, J.B., Hunt, A.G., Shanks, W.C.P., and Evans, W.C., Gas and Isotope Chemistry of Thermal Features in Yellowstone National Park, Wyoming (Scientific Investigation Report 2011–5012 Version 1.1, September 2014), USGS, 2014. https://doi.org/10.3133/sir20115012

  12. Blinova, V.N., Composition and origin of hydrocarbon fluids in the mud volcanoes of the Gulf of Cadiz, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow, 2006.

  13. Botz, R., Wehner, H., Schmitt, M., Worthington, T.J., Schmidt, M., and Stoffers, P., Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, N. Z. Chem. Geol., 2002, vol. 186, pp. 235–248.

    Article  Google Scholar 

  14. Bradley, A.S. and Summons, R.E., Multiple origins of methane at the lost city hydrothermal field, Earth Planet. Sci. Lett., 2010, vol. 297, pp. 34–41.

    Article  Google Scholar 

  15. Byrne, D., Barry, P., Lawson, M., and Ballentine, C., Noble gases in conventional and unconventional petroleum systems, Geol. Soc. London Spec. Publ., 2017, vol. 468, pp. 127–149. https://doi.org/10.1144/SP468.5

    Article  Google Scholar 

  16. Capaccioni, B., Tassi, F., Renzulli, A., Vaselli, O., Menichetti, M., and Inguaggiato, S., Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben, J. Volcanol. Geotherm. Res., 2014, vol. 280, pp. 40–52.

    Article  Google Scholar 

  17. Chao, H.-C., You, C.-F., and Sun, C.-H., Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes, Appl. Geochem., 2010, vol. 25, pp. 428–436.

    Article  Google Scholar 

  18. Chen, Z., Li, Y., Liu, Z., Zheng, G., Xu, W., Yan, W., and Yi, L., CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar Basin, NW China: Origin, output, and relation to regional tectonics, J. Geophys. Res.: Solid Earth, 2019, vol. 124, pp. 5030–5044. https://doi.org/10.1029/2018JB016822

    Article  Google Scholar 

  19. Chiodini, G., D’Alessandro, W., and Parello, F., Geochemistry of gases and waters discharged by the mud volcanoes at Paterno, Mt. Etna (Italy), Bull. Volcanol., 1996, vol. 58, pp. 51–58. https://doi.org/10.1007/s004450050125

    Article  Google Scholar 

  20. Cinti, D., Tassi, F., Procesi, M., Bonini, M., Capecchiacci, F., Voltattorni, N., Vaselli, O., and Quattrocchi, F., Fluid geochemistry and geothermometry in the unexploited geothermal field of the Vicano-Cimino volcanic district (Central Italy), Chem. Geol., 2014, vol. 371, pp. 96–114.

    Article  Google Scholar 

  21. Dadashev, A.A., Features of the carbon isotope composition of natural hydrocarbons on the western side of the South Caspian Basin in connection with the assessment of the oil and gas potential of its deep zones, Cand. Sci. (Geol.–Min.) Dissertation, Baku: Inst. Geol. Acad. Sci. Azerb. SSR, 1985.

  22. Dai, J., Song, Y., Dai, Ch., and Wang, D., Geochemistry and accumulation of carbon dioxide gases in China, AAPG Bull., 1996, vol. 80, no. 10, pp. 1615–1625. https://doi.org/10.1306/64EDA0D2-1724-11D7-8645000102C1865D

    Article  Google Scholar 

  23. Dai, J., Zou, C., Zhang, Sh., Li, J., Ni, Y., Hu, G., Luo, X., Tao, Sh., Zhu, G., Mi, J., Li, Zh., Hu, A., Yang, Ch., Zhou, Q., Shuai, Y., et al., Discrimination of abiogenic and biogenic alkane gases, Sci. China, Ser. Earth Sci., 2008, vol. 51, no. 12, pp. 1737–1749.

    Google Scholar 

  24. Des Marais, D.J., Donchin, J.H., Nehring, N.L., and Truesdell, A.H., Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons, Nature, 1981, vol. 292, pp. 826–828.

    Article  Google Scholar 

  25. Deville, E., Battani, A., Griboulard, R., Guerlais, S., Herbin, J.P., Houzay, J.P., Muller, C., and Prinzhofer, A., The origin and processes of mud volcanism: New insights from Trinidad, Geol. Soc. London Spec. Publ., 2003, vol. 216, pp. 475–490. https://doi.org/10.1144/GSL.SP.2003.216.01.31

    Article  Google Scholar 

  26. Dimitrov, L.I., Mud volcanoes - the most important pathway for degassing deeply buried sediments, Earth Sci. Rev., 2002, vol. 59, pp. 49–76.

    Article  Google Scholar 

  27. Ershov, V.V. and Bondarenko, D.D., Characterization of isotopic and chemical composition of gases ejected from mud volcanoes in different regions of the world, Geoekol., Inzh. Geol., Gidrogeol., Geokriol., 2020, no. 3, pp. 23–35. https://doi.org/10.31857/S0869780920030029

  28. Etiope, G. and Klusman, R.W., Geologic emissions of methane to the atmosphere, Chemosphere, 2002, vol. 49, pp. 777–789.

    Article  Google Scholar 

  29. Etiope, G., Feyzullayev, A., and Baciu, C.L., Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin, Mar. Petrol. Geol., 2009a, vol. 26, pp. 333–344.

    Article  Google Scholar 

  30. Etiope, G., Feyzullayev, A., Milkov, A.V., et al., Evidence of subsurface anaerobic biodegradation of hydrocarbon sand potential secondary methanogenesis in terrestrial mud volcanoes, Mar. Petrol. Geol., 2009b, vol. 26, pp. 1692–1703.

    Article  Google Scholar 

  31. Etiope, G., Nakada, R., Tanaka, K., and Yoshida, N., Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): Origin, post-genetic alterations and CH4–CO2 fluxes, Appl. Geochem., 2011, vol. 26, no. 3, pp. 348–359. https://doi.org/10.1016/j.apgeochem.2010.12.008

    Article  Google Scholar 

  32. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., and Valenza, M., Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 963–981. https://doi.org/10.1016/S0016-7037(01)00813-4

    Article  Google Scholar 

  33. Feyzullayev, A.A., Mud volcanoes in the South Caspian basin: Nature and estimated depth of its products, Nat. Sci., 2012, vol. 4, no. 7, pp. 445–453.

    Google Scholar 

  34. Feyzullayev, A.A., Present-day fluid dynamics in the South Caspian Basin: Features and quantitative estimates, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 7, pp. 754–770. https://doi.org/10.1134/S000143382107004

    Article  Google Scholar 

  35. Feyzullayev, A.A. and Movsumova, U.A., The nature of the isotopically heavy carbon of carbon dioxide and bicarbonates in the waters of mud volcanoes in Azerbaijan, Geochem. Int., 2010, vol. 48, no. 5, pp. 517–522.

    Article  Google Scholar 

  36. Feyzullayev, A.A., Guseinov, D.A., and Rashidov, T.M., Isotope composition of mud volcano products of the South Caspian Basin in terms of the oil and gas potential of deep-seated deposits, Izv. Akad. Nauk Azerb., Ser. Nauk Zemle, 2022, no. 1, pp. 68–80. https://doi.org/10.33677/ggianas20220100073

  37. Fiebig, J., Chiodini, G., Caliro, S., Rizzo, A., Spangenberg, J., and Hunziker, J.C., Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic–hydrothermal systems, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 10, pp. 2321–2334.

    Article  Google Scholar 

  38. Frolova, T.I., Volcanism and its role in the Earth’s evolution, Soros. Obraz. Zh., 1996, no. 2, pp. 74–81.

  39. Garofalo, K., Tassi, F., Vaselli, O., Delgado-Huertas, A., Tedesco, D., Frische, M., Hansteen, T.H., Poreda, R.J., and Strauch, W., Fumarolic gases at Mombacho volcano (Nicaragua): Presence of magmatic gas species and implications for volcanic surveillance, Bull. Volcanol., 2007, vol. 69, pp. 785–795. https://doi.org/10.1007/s00445-006-0108-z

    Article  Google Scholar 

  40. Giggenbach, W.F., Sano, Y., and Wakita, H., Isotopic composition of helium, CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3427–3455.

    Article  Google Scholar 

  41. Gilbert, A., Nakagawa, M., Taguchi, K., Zhang, N., Nishida, A., and Yoshida, N., Hydrocarbon cycling in the Tokamachi mud volcano (Japan): Insights from isotopologue and metataxonomic analyses, Microorganisms, 2022, vol. 10, pp. 1–13. https://doi.org/10.3390/microorganisms10071417

    Article  Google Scholar 

  42. Giustini, F., Blessing, M., Brilli, M., Lombardi, S., Voltattorni, N., and Widory, D., Determining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysis, Appl. Geochem., 2013, vol. 34, pp. 90–101.

    Article  Google Scholar 

  43. Granieri, D., Chiodini, G., Avino, R., and Caliro, S., Carbon dioxide emission and heat release estimation for Pantelleria Island (Sicily, Italy), J. Volcanol. Geotherm. Res., 2014, vol. 275, pp. 22–33.

    Article  Google Scholar 

  44. Guliyev, I. and Feyzullayev, A., Geochemistry of hydrocarbon seepages in Azerbaijan, in Hydrocarbon Migration and Its Near-Surface Expression, Schumacher, D. and Abrams, Eds., Tulsa, Okla.: Am. Assoc. Petrol. Geol., 1996, pp. 63–70.

  45. Guliyev, I.S. and Feyzullayev, A.A., All About Mud Volcanoes, Baku: Nafta-Press, 1997.

    Google Scholar 

  46. Heller, C., Fluid venting structures of terrestrial mud volcanoes (Italy) and marine cold seeps (Black Sea): Organo–geochemical and biological approaches, Doctoral Dissertation, Göttingen, Georg-August Univ., 2011, ch. 4, pp. 65–87 (The expelled mud volcano fluids (gas, water and sediment particles): First attempt).

  47. Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J., and Saunders, A.D., Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites, Geochem., Geophys., Geosyst., 2007, vol. 8, no. 2, pp. 1–34.

    Article  Google Scholar 

  48. Hilton, D.R. and Porcelli, D., Noble gases as mantle tracers, Treatise Geochem., 2003, vol. 2, pp. 277–318. https://doi.org/10.1016/B0-08-043751-6/02007-7

    Article  Google Scholar 

  49. Horita, J. and Berndt, M.E., Abiogenic methane formation and isotopic fractionation under hydrothermal conditions, Science, 1999, vol. 285, no. 5430, pp. 1055–1057.

    Article  Google Scholar 

  50. Hulston, J.R. and McCabe, W.J., Mass spectrometer measurements in the thermal areas of New Zealand. Pt. II. Carbon isotope ratios, Geochim. Cosmochim. Acta, 1962, vol. 26, pp. 399–410.

    Article  Google Scholar 

  51. Inguaggiatoa, S., Pecoraino, G., and D’Amore, F., Chemical and isotopical characterisation of fluid manifestations of Ischia Island (Italy), J. Volcanol. Geotherm. Res., 2000, vol. 99, pp. 151–178.

    Article  Google Scholar 

  52. Inguaggiatoa, S., Hidalgo, S., Beate, B., and Bourquin, J., Geochemical and isotopic characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc, Geofluids, 2010, vol. 10, no. 4, pp. 525–541. https://doi.org/10.1111/j.1468-8123.2010.00315.x

    Article  Google Scholar 

  53. Ishibashi, J.-I., Wakita, H., Nojiri, Y., Grimaud, D., Jean-Baptiste, P., Gamo, T., Auzende, J.-M., and Urabe, T., Helium and carbon geochemistry of hydrothermal fluids from the North Fiji Basin spreading ridge (Southwest Pacific), Earth Planet. Sci. Lett., 1994, vol. 128, pp. 183–197.

    Article  Google Scholar 

  54. Ismet, A.R., Dzhafarova, R.S., Dzhafarov, S.A., and Abdullaev, I.A., Some regularities in the distribution of inert species (Ne, Ar, N2) in hydrocarbon gases of Azerbaijan, Tr. Inst. Geol. Akad. Nauk Azerb., 1997, no. 26, pp. 186–194.

  55. Jackson, R.B., Saunois, M., Bousquet, P., Canadell, J.G., Poulter, B., Stavert, A.R., Bergamaschi, P., Niwa, Y., Segers, A., and Tsuruta, A., Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources, Environ. Res. Lett., 2020, vol. 15, no. 7, pp. 1–7. https://doi.org/10.1088/1748-9326/ab9ed2

    Article  Google Scholar 

  56. Javoy, M., Pineau, F., and Allegre, C., Carbon geodynamic cycle, Nature, 1982, vol. 300, pp. 171– 173. https://doi.org/10.1038/300171a0

    Article  Google Scholar 

  57. Jenden, P.D., Hilton, D.R., Kaplan, I.R., et al., Abiogenic hydrocarbons and mantle helium in oil and gas fields, in The Future of Energy Gases, Howell, D.G., Ed., USGS, 1993, pp. 31–56.

    Google Scholar 

  58. Joseph, E.P., Fournier, N., Lindsay, J.M., and Fischer, T.P., Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles Island arc, J. Volcanol. Geotherm. Res., 2011, vol. 206, pp. 1–14.

    Article  Google Scholar 

  59. Kadirov, F.A., Lerche, I., Guliyev, I.S., Kadyrov, A.G., Feyzullayev, A.A., and Mukhtarov, A., Deep structure model and dynamics of mud volcanoes, Southwest Absheron Peninsula (Azerbaijan), Energy Explor. Exploit., 2005, vol. 23, no. 5, pp. 307–332.

    Article  Google Scholar 

  60. Kalacheva, E., Taran, Y., and Kotenko, T., Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands, J. Volcanol. Geotherm. Res., 2015, vol. 296, pp. 40–54.

    Article  Google Scholar 

  61. Kennedy, M. and Van Soest, M., Flow of mantle fluids through the ductile lower crust: Helium isotope trends, Science, 2007, vol. 318, no. 5855, pp. 1433–1436. https://doi.org/10.1126/science.1147537

    Article  Google Scholar 

  62. Kholodov, V.N., Mud volcanoes: Distribution and genesis, Geol. Polezn. Iskop. Mirovogo Okeana, 2012, no. 4, pp. 5–28.

  63. Kikvadze, O.E., Geochemistry of mud volcanic fluids of the Caucasus regiona, Extended Abstract of Cand. Sci. (Geol.–Min.) Dissertation, Moscow, 2016.

  64. Kikvadze, O.E., Lavrushin, V.Yu., Pokrovskii, B.G., and Polyak, B.G., Isotope and chemical composition of mud volcanic gases in the Taman Peninsula and the problem of their genesis, Litol. Polezn. Iskop., 2014, no. 6, pp. 525–538.

  65. Kikvadze, O.E., Lavrushin, V.Yu., Pokrovskii, B.G., and Polyak, B.G., Gases from mud volcanoes of Western and Central Caucasus, Geofluids, 2010, vol. 10, pp. 486–496.

    Article  Google Scholar 

  66. Kopf, A.J., Significance of mud volcanism, Rev. Geophys., 2002, vol. 40, pp. 1–51.

    Article  Google Scholar 

  67. Kopf, A., Deyhle, A., Lavrushin, V.Y., Polyak, B.G., Gieskes, J.M., Buachidze, G.I., Wallmann, K., and Eisenhauer, A., Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone, Int. J. Earth Sci. (Geol. Rundsch.), 2003, vol. 92, pp. 407–425. https://doi.org/10.1007/s00531-003-0326-y

    Article  Google Scholar 

  68. Lagunova, I.A., On the genesis of SO2 in gases of mud volcanoes of the Kerch–Taman region, Geokhimiya, 1974, no. 11, pp. 1711–1716.

  69. Lavrushin, V.Yu., Polyak, B.G., Pokrovskii, B.G., Kopp, M.L., Buachidze, G.I., and Kamenskii, I.L., Isotope-geochemical features of mud volcanoes in Eastern Georgia, Litol. Polezn. Iskop., 2009, no. 2, pp. 183–197.

  70. Lavrushin, V.Yu., Aidarkozhina, A.S., Sokol, E.V., Chelnokov, G.A., and Petrov, O.L., Mud volcanic fluids of the Kerch–Taman region: Geochemical reconstructions and regional trends. 2. Genesis of mud volcanic gases and regional geochemical trends, Litol. Polezn. Iskop., 2022, no. 1, pp. 3–27. https://doi.org/10.31857/S0024497X22010062

  71. Le Pichon, X., Foucher, J.P., Boulegue, J., Henry, P., Lallemant, S., Benedetti, M., Avedik, F., and Mariotti, A., Mud volcano field seaward of the Barbados accretionary complex: A submersible survey, J. Geophys. Res.: Solid Earth, 1990, vol. 95, no. B6, pp. 8931–8943.

    Article  Google Scholar 

  72. Lee, K., Classification of geothermal resources by energy, Geothermics, 2001, vol. 30, pp. 431–442.

    Article  Google Scholar 

  73. Liu, C.-C., Prakash Maity, J., Jean, J.-S., Selim Reza, A.H.M., Li, Zh., Nath, B., Lee, M.-K., Lin, K.-H., and Bhattacharya, P., Geochemical characteristics of the mud volcano fluids in southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater, Environ. Earth Sci., 2012, vol. 66, pp. 1513–1523. https://doi.org/10.1007/s12665-011-1391-3

    Article  Google Scholar 

  74. Lorenson, T.D. and Kvenvolden, K.A., A comparison of hydrocarbon gases from natural sources in the Northwestern United States, in The Future of Energy Gases, Howell, D.G., Ed., USGS, 1993, pp. 453–470.

    Google Scholar 

  75. Luth, W., Jahns, R.H., and Tuttle, O.F., The granite system at pressures of 4 to 10 kilobars, J. Geophys. Res., 1964, vol. 69, no. 4, pp. 759–773. https://doi.org/10.1029/JZ069i004p00759

    Article  Google Scholar 

  76. Marty, B., Torgersen, T., Meynier, V., O’Nions, R.K., and De Marsily, G., Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin, Water Resour. Res., 1993, vol. 29, pp. 1025–1035. https://doi.org/10.1029/93WR00007

    Article  Google Scholar 

  77. Mazzini, A., Sciarra, A., Lupi, M., Ascough, P., Akhmanov, G., Karyono, K., and Husein, A., Deep fluids migration and submarine emersion of the Kalang Anyar mud volcano (Java, Indonesia): A multidisciplinary study, Mar. Petrol. Geol., 2022, vol. 148, pp. 1–46. https://doi.org/10.1016/j.marpetgeo.2022.105970

    Article  Google Scholar 

  78. Menapace, W., Mud volcanic episodicity: Subduction zone water budget, long-term monitoring and laboratory case studies, Doctoral (Nat. Sci.) Dissertation, Bremen: Bremen University, 2017.

  79. Milkov, A.V., Worldwide distribution of submarine mud volcanoes and associated gas hydrates, Mar. Geol., 2000, vol. 167, pp. 29–42.

    Article  Google Scholar 

  80. Minissale, A., Mattash, M.A., Vaselli, O., Tassi, F., Al-Ganad, I.N., Selmo, E., Shawki, N.M., Tedesco, D., Poreda, R., Ad-Dukhain, A.M., and Hazzae, M.K., Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country’s geothermal potential, Appl. Geochem., 2007, vol. 22, pp. 799–820.

    Article  Google Scholar 

  81. Minissale, A., Corti, G., Tassi, F., Darrah, T.H., Vaselli, O., Montanari, D., Montegrossi, G., Yirgu, G., Selmo, E., and Teclu, A., Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian rift, East Africa, J. Volcanol. Geotherm. Res., 2017, vol. 336, pp. 1–18.

    Article  Google Scholar 

  82. Motyka, R.J., Hawkins, D.B., Poreda, R.J., and Jeffries, A., Geochemistry, isotopic composition, and the origin of fluids emanating from mud volcanoes in the Copper River basin, Alaska: Final report, Juneau: Alaska Dept. of Nat. Res., Division of Geological and Geophysical Surveys, 1986.

  83. Nakada, R., Takahashi, Y., Tsunogai, U., Zheng, G., Shimizu, H., and Hattori, K.H., A geochemical study on mud volcanoes in the Junggar basin, China, Appl. Geochem., 2011, vol. 26, pp. 1065–1076.

    Article  Google Scholar 

  84. Ni, Y., Dai, J., Zhou, Q., Luo, X., Hu, A., and Yang, Ch., Geochemical characteristics of abiogenic gas and its percentage in Xujiaweizi fault depression, Songliao Basin, NE China, Petrol. Explor. Dev., 2009, vol. 36, no. 1, pp. 35–45. https://doi.org/10.1016/S1876-3804(09)60109-9

    Article  Google Scholar 

  85. Ohba, T., Sawa, T., Taira, N., Yang, T.F., Lee, H.F., Lan, T.F., Ohwada, M., Morikawa, N., and Kazahaya, K., Magmatic fluids of Tatun volcanic group, Taiwan Appl. Geochem., 2010, vol. 25, pp. 513–523.

    Article  Google Scholar 

  86. O’Nions, P.K. and Oxburgh, E.R., Helium, volatile fluxes, and the development of continental crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 331–347.

    Article  Google Scholar 

  87. Philpotts, A.R., Principles of Igneous and Metamorphic Petrology, Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  88. Poreda, R.J., Craig, H., Arnorsson, S., and Welhan, J.A., Helium-isotopes in Icelandic geothermal systems. 1. 3He, gas chemistry, and 13C relations, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 12, pp. 4221–4228.

    Article  Google Scholar 

  89. Prinzhofer, A., Noble gases in oil and gas accumulators, in The Noble Gases as Geochemical Tracers: Advances in Isotope Geochemistry, Burnard, P., Ed., Berlin–Heidelberg: Springer, 2013, pp. 225–247. https://doi.org/10.1007/978-3-642-28836-4_9.

  90. Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., and Kelley, D.S., Abiotic hydrocarbon production at lost city hydrothermal field, Science, 2008, vol. 319, pp. 604–607.

    Article  Google Scholar 

  91. Rakhmanov, R.R., Gryazevye vulkany i ikh znachenie v prognozirovanii gazoneftenosnosti nedr (Mud Volcanoes and Their Importance in Forecasting the Gas and Oil Content of the Earth Interior), Moscow: Nauka, 1987.

  92. Rast, H., Vulkane und Vulkanismus, Leipzig: BSB B.G. Teubner, 1980; Moscow: Mir, 1982.

  93. Rollinson, H.R. and Pease, V., Using Geochemical Data: To Understand Geological Processes, Cambridge: Cambridge Univ. Press, 2021. https://doi.org/10.1017/9781108777834.

  94. Sano, Y. and Marty, B., Origin of carbon in fumarolic gas from island arcs, Chem. Geol., 1995, vol. 119, nos. 1–4, pp. 265–274. https://doi.org/10.1016/0009-2541(94)00097-R

    Article  Google Scholar 

  95. Schoell, M., Multiple origins of methane in the Earth, Chem. Geol., 1988, vol. 71, nos. 1–3, pp. 1–10. https://doi.org/10.1016/0009-2541(88)90101-5

    Article  Google Scholar 

  96. Shakirov, R.B., Chemical and isotopic characteristics of hydrocarbon gases from Mendeleev and Golovnin volcanoes, Kunashir Island, Geochem. Int., 2014, vol. 52, no. 3, pp. 247–259.

    Article  Google Scholar 

  97. Shebalin, N.V., Zakonomernosti v prirodnykh katastrofakh (Regularities in Natural Disasters), Moscow: Znanie, 1985. Siebert, L. and Simkin, T., Volcanoes of the World: An illustrated catalog of Holocene volcanoes and their eruptions, Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. http://www.volcano.si.edu/gvp/world.

  98. Sorochinskaya, A.V., Shakirov, R.B., and Obzhirov, A.I., Mud volcanoes of the Island of Sakhalin: Gas geochemistry and mineralogy, Reg. Probl., 2009, no. 11, pp. 39–44.

  99. Stadnitskaia, A., Ivanov, M.K., Blinova, V., Kreulen, R., and Tjeerd van Weering, C.E., Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic, Mar. Petrol. Geol., 2006, vol. 23, pp. 281–296.

    Article  Google Scholar 

  100. Taguchi, K., Gilbert, A., Sherwood Lollar, B., et al., Low 13C–13C abundances in abiotic ethane, Nat. Commun., 2022, vol. 13, pp. 57–90. https://doi.org/10.1038/s41467-022-33538-9

    Article  Google Scholar 

  101. Takahata, N., Yokochi, R., Nishio, Y., and Sano, Y., Volatile element isotope systematics at Ontake volcano, Jpn. Geochem. J., 2003, vol. 37, pp. 299–310.

    Article  Google Scholar 

  102. Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Armienta, M.A., and Macias, J.L., Geochemistry of the volcano-hydrothermal system of Al Chichon volcano, Chiapas, Mexico, Bull. Volcanol., 1998, vol. 59, no. 6, pp. 436–449.

    Article  Google Scholar 

  103. Taran, Y., Varley, N.R., Inguaggiato, S., and Cienfuegos, E., Geochemistry of H2- and HC4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico: Evidence for serpentinization and abiogenic methane, Geofluids, 2010, vol. 10, no. 4, pp. 542–555. https://doi.org/10.1111/j.1468-8123.2010.00314.x

    Article  Google Scholar 

  104. Taran, Y., Zelenski, M., Chaplygin, I., Malik, N., Campion, R., Inguaggiato, S., Pokrovsky, B., Kalacheva, E., Melnikov, D., Kazahaya, R., and Fischer, T., Gas emissions from volcanoes of the Kuril island arc (NW Pacific): Geochemistry and fluxes, Geochem., Geophys., Geosyst., 2018, vol. 19, no. 6, pp. 1859–1880.

    Article  Google Scholar 

  105. Tassi, F., Vaselli, O., Capaccioni, B., Giolito, C., Duarte, E., Fernandez, E., Minissale, A., and Magro, G., The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa Rica): A combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance, J. Volcanol. Geotherm. Res., 2005, vol. 148, pp. 315–333.

    Article  Google Scholar 

  106. Tassi, F., Vaselli, O., Capaccioni, B., Montegrossi, G., Barahona, F., and Caprai, A., Scrubbing process and chemical equilibria controlling the composition of light hydrocarbons in natural gas discharges: An example from the geothermal fields of El Salvador, Geochem., Geophys., Geosyst., 2007, vol. 8, no. 5, p. Q05008. https://doi.org/10.1029 /2006GC001487.

    Article  Google Scholar 

  107. Tassi, F., Aguilera, F., Vaselli, O., Darrah, T., and Medina, E., Gas discharges from four remote volcanoes in northern Chile (Putana, Olca, Irruputuncu and Alitar): A geochemical survey, Ann. Geophys., 2011, vol. 54, no. 2, pp. 121–136. https://doi.org/10.4401/ag-5173

    Article  Google Scholar 

  108. Tassi, F., Bonini, M., Montegrossi, G., Capecchiacci, F., Capaccioni, B., and Vaselli, O., Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions, Chem. Geol., 2012, vol. 294-295, pp. 113–126.

    Article  Google Scholar 

  109. Tedesco, D., Tassi, F., Vaselli, O., Poreda, R.J., Darrah, T., Cuoco, E., and Yalire, M.M., Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications, J. Geophys. Res., 2010, vol. 115, no. B1, p. B01205. https://doi.org/10.1029/2008JB006227

    Article  Google Scholar 

  110. Thiery, R. and Mercury, L., Explosive properties of water in volcanic and hydrothermal systems, J. Geophys. Res., 2009, vol. 114, p. B05205. https://doi.org/10.1029/2008JB005742

    Article  Google Scholar 

  111. Thy, P., Tegner, C., and Lesher, C.E., Liquidus temperatures of the Skaergaard magma, Am. Mineral., 2009, vol. 94, no. 10, pp. 1371–1376.

    Article  Google Scholar 

  112. Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.E., Prokhorov, V.S., and Titkov, G.A.,, Isotope profile of mud volcano gases, Litol. Polezn. Iskop., 1985, no. 1, pp. 72–87.

  113. Vlodavets, V.I., Vulkany mira (World Volcanoes), Moscow, 2007, pp. 19–20.

    Google Scholar 

  114. Wang, X., Guo, Zh., Tuo, J., Guo, H., Li, Zh., Zhuo, Sh., Jiang, H., Zeng, L., Zhang, M., Wang, L., Liu, Ch., Yan, H., Li, L., Zhou, X., Wang, Y., et al., Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China Earth Sci., 2009, vol. 52, no. 2, pp. 213–226.

    Article  Google Scholar 

  115. Wang, Y., Kazumi, S., Gao, W., Gao, X., Li, H., Guo, X., et al., Direct conversion of CO2 to aromatics with high yield via a modified Fischer–Trash synthesis pathway, Appl. Catal. B: Environ., 2020, vol. 269, p. 118792. https://doi.org/10.1016/j.apcatb.2020.118792

    Article  Google Scholar 

  116. Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B., A common origin of carbonatite magmas, Geology, 2017, vol. 45, no. 6, pp. 507–510. https://doi.org/10.1130/G38801.1

    Article  Google Scholar 

  117. Welhan, J.A. and Craig, H., Methane, hydrogen and helium in hydrothermal fluids of 21° N on the East Pacific Rise, in Hydrothermal Processes at Seafloor Spreading Centers, Rona, P.A., Boström, K., Laubier, L., and Smith, K.L., Jr., Eds., New York: Plenum, 1983, pp. 391–409.

    Google Scholar 

  118. Wen, H.Y., Sano, Y., Takahata, N., et al., Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan, Sci. Rep., 2016, vol. 6, p. 34126. https://doi.org/10.1038/srep34126

    Article  Google Scholar 

  119. White, W.M., Noble gas geochemistry, in Isotope Geochemistry, New York: John Willey and Sons, 2014, ch. 12, pp. 427–460. http://www.geo.cornell.edu/geology/classes/Geo656/656notes13/IsotopeGeochemistryChapter12.pdf.

    Google Scholar 

  120. Wibowo, H.T., Prastisho, B., Prasetyadi, C., and Yudiantoro, D.F., The evolution of Sidoarjo hot mudflow (Lusi), Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 212, p. 012050. https://doi.org/10.1088/1755-1315/212/1/012050.

  121. Yang, T.F., Yeh, G.-H., Fu, C.-C., Wang, C.-C-., Lan, T.-F., Lee, H.-F., Chen, C.-H., Walia, V., and Sung, Q.-C., Composition and exhalation flux of gases from mud volcanoes in Taiwan, Environ. Geol., 2004, vol. 46, pp. 1003–1011.

    Article  Google Scholar 

  122. Zhang, L., Guo, Zh., Sano, Y., Zhang, M., Suna, Y., Chen, T., and Yang, T.F., Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrain, South Tibet: Constraints on characteristics of deep carbon cycle in the India–Asia continent subduction zone, J. Asian Earth Sci., 2017, vol. 149, pp. 110–123.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Feyzullayev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyzullayev, A.A. Isotope Composition of Gases of Magmatic and Sedimentary Volcanic Systems: A Review and Comparative Analysis. Izv. Atmos. Ocean. Phys. 59, 912–925 (2023). https://doi.org/10.1134/S0001433823080017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823080017

Keywords:

Navigation