Skip to main content
Log in

Physical Foundations of Recent Geodynamics

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The physical (phenomenological) foundations of recent geodynamics are considered. The definitions of geodynamics and recent geodynamics are substantiated based on ideas about the primacy of movements in the event of strains. The main tasks of the study are formulated, as are the scheme of formation of the recent geodynamic state of the subsoil. The issues of identifying the movements of the Earth’s surface are discussed and a formula is proposed for estimating the relative bending strain. It is shown that the observed strains of the Earthʼs surface, obtained by geodetic (satellite and ground) methods, are relative in nature and depend on the specific kinematic scheme of motion of individual elements (blocks) of the medium. The results of long-term repeated geodetic observations of recent vertical and horizontal movements of the Earthʼs surface in seismically active (Kopetdag, Kamchatka) and aseismic, platform regions (Pripyat depression) are presented. It is shown that the average annual rate of regional relative strains varies in the range from 10–8 to 10–9 year–1. Zonal and local strains vary in the range from 10–4 to 10–6 year–1. The “paradoxes” of large and small strains in recent geodynamics are formulated and their explanation is given on the basis of the equations of hereditary mechanics of solids and ideas about the parametric induction of strain processes in fault zones by small natural and technogenic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.

REFERENCES

  1. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’ – indutsirovannaya i triggernaya (Induced and Triggered Anthropogenic Seismicity), Moscow: IDG RAN, 2015.

  2. Allen, M., Jacson, J., and Walker, R., Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 2004, vol. 23, no. 2, pp. 1–16. https://doi.org/10.1029/2003TC001530

    Article  Google Scholar 

  3. Andronov, A.A. and Chaikin, C.E., Theory of Oscillations, New Jersey, Princeton: Princeton Univ. Press, 1949.

    Google Scholar 

  4. Ashurkov, S.V., San’kov, V.A., Serov, M.A., Luk’yanov, P.Yu., Grib, N.N., Bordonskii, G.S., and Dembelov, M.G., Evaluation of present-day deformations in the Amurian Plate and its surroundings, based on GPS data, Russ. Geol. Geophys., 2016, vol. 57, no. 11, pp. 1626–1634. https://doi.org/10.1016/j.rgg.2016.10.008

    Article  Google Scholar 

  5. Atabekov, I., Earth core’s stresses variation in Central Asian earthquakes region, Geod. Geodyn., 2020, vol. 11, no. 4. https://doi.org/10.1016/j.geog.2019.12.005

  6. Atabekov, I.U., Experience of modeling the seismotectonic flow of the Earth’s crust in Central Asia, Izv., Phys. Solid Earth, 2021, vol. 57, no. 1, pp. 110–119.

    Article  Google Scholar 

  7. Berger, J.A., A note on thermoelastic strains and tilts, J. Geophys. Res., 1975, vol. 80, no. 2, pp. 274–277.

    Article  Google Scholar 

  8. Birger, B.I., Transient creep of the lithosphere and its role in geodynamics, Izv., Phys. Solid Earth, 2012, vol. 48, no. 6, pp. 496–503.

    Article  Google Scholar 

  9. Bulanzhe, Yu.D. and Magnitskii, V.A., Contemporary movements of the Earth core: State of the art, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1974, no. 10, pp. 19–54.

  10. Burov, E.B., Plate rheology and mechanics, in Treatise of Geophysics, Schubert, G., Ed., Amsterdam: Elsevier, 2007, vol. 6, pp. 100–161.

    Google Scholar 

  11. Churikov, V.A. and Kuzmin, Yu.O., Relation between deformation and seismicity in the active fault zone of Kamchatka, Russia, Geophys. J. Int., 1998, vol. 133, pp. 607–614.

    Article  Google Scholar 

  12. Eglit, M.E. and Drozdova, Yu.A., Mekhanika sploshnykh sred (Continuum Mechanics), Moscow: RGU nefti i gaza im. I.M. Gubkina, 2012.

  13. Esikov, N.P., Sovremennye dvizheniya zemnoi poverkhnosti s pozitsii teorii deformatsii (Contemporary Movements of the Earth’s Surface from the Perspective of Deformation Theory), Novosibirsk: Nauka, 1991.

  14. Fattakhov, E.A., Determination of the major axes of compression and tension from optical distance data by strain-gage analysis (Petropavlovsk geodynamic polygon, Kamchatka Peninsula), Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 7, pp. 748–755. https://doi.org/10.1134/S0001433822070039

    Article  Google Scholar 

  15. Fizicheskaya entsiklopediya (Encyclopedia of Physics), vol. 1: Aaronova–Dlinnye (Aaronova–Dlinnye), Prokhorov, A.M., Ed., Moscow: Sov. entsiklopediya, 1988.

  16. Galaganov, O.N., Guseva, T.V., Krupennikova, I.S., and Perederin, V.P., Comparison between GLONASS and GPS measurement data for geodynamic test fields, Monit.: Nauka Tekhnol., 2014, no. 1, pp. 6–15.

  17. Galaganov, O.N., Guseva, T.V., Krupennikova, I.S., Mokrova, A.N., and Perederin, V.P., GNSS monitoring and seismic activity of northeastern Russia, Monit.: Nauka Tekhnol., 2016, no. 2, pp. 40–47.

  18. Galaganov, O.N., Guseva, T.V., Krupennikova, I.S. Mokrova, A.N., and Rozenberg, N.K., Monitoring of natural deformation processes during survey activities at a NPP site, Monit.: Nauka Tekhnol., 2017, no. 2, pp. 15–23.

  19. Geertsma, J., Land subsidence above compacting oil and gas reservoirs, J. Petrol. Technol., 1973, vol. 50, pp. 734–744.

    Article  Google Scholar 

  20. Grigoryev, A.S., Volovich, I.M., Mikhailova, A.V., Rebetsky, Yu.L., and Shakhmuradova, Z.E., Relationships between the kinematics of the top of a layer and the state of stress within it due to block motion at its bottom (in connection with the interpretation of recent movements), J. Geodyn., 1988, vol. 10, nos. 2–4, pp. 127–138. https://doi.org/10.1016/0264-3707(88)90019-1

    Article  Google Scholar 

  21. Harrison, J.C. and Herbst, K., Thermoelastic strains and tilts revisited, Geophys. Res. Lett., 1977, vol. 4, no. 11, pp. 535–537.

    Article  Google Scholar 

  22. Izyumov, S.F. and Kuz’min, Yu.O., Study of the recent geodynamic processes in the Kopet-Dag region, Izv., Phys. Solid Earth, 2014, vol. 50, no. 6, pp. 719–731.

    Article  Google Scholar 

  23. Kaftan, V.I., Maps of recent crustal movements: Content and significance, Izv., Phys. Solid Earth, 1996, vol. 32, no. 1, pp. 42–54.

    Google Scholar 

  24. Kaftan, V.I., Kuznetsov, Yu.A., Serebryakova, L.I., and Vereshchetina, A.V., Maps of contemporary movements of the Earth’s crust: Content and information content, Geod. Kartogr., 1995, no. 12, pp. 18–21.

  25. Kaftan, V.I., Sidorov, V.A., and Ustinov, A.V., A comparative analysis of the accuracy attainable for the local monitoring of Earth’s surface movements and deformation using the GPS and GLONASS navigation satellite systems, J. Volcanol. Seismol., 2017, vol. 11, no. 3, pp. 217–224.

    Article  Google Scholar 

  26. Karato, S., Deformation of Earth Materials, Cambridge: Cambridge Univ. Press, 2008.

    Book  Google Scholar 

  27. Kashin, L.A., Postroenie klassicheskoi astronomo–geodezicheskoi seti Rossii i SSSR (1816–1991 gg.) (Construction of the Classical Astronomical and Geodetic Network of Russia and USSR (1816–1991)), Moscow: Kartgeotsentr-Geodezizdat, 1999.

  28. Kashnikov, Yu.A. and Ashikhmin, S.G., Mekhanika gornykh porod pri razrabotke mestorozhdenii uglevodorodnogo syr’ya (Mechanics of Rocks in the Development of Raw Hydrocarbon Deposits), Moscow: Gorn. kniga, 2019.

  29. Khaikin, S.E., Mekhanika (Mechanics), Moscow: Gos. izd. tekh.-teor. lit., 1940.

  30. Khaikin, S.E., Sily inertsii i nevesomost' (Inertial Forces and Weightlessness), Moscow: Nauka, 1971.

  31. Khisamov, R.S, Gatiyatullin, N.S., Kuz’min, Yu.O., Bakirov, R.Kh., Gatiyatullin, R.N., Rakhmattulin, M.Kh., Baratov, A.R., and Kashurkin, P.I., Sovremennaya geodinamika i seismichnost' yugo-vostoka Tatarstana (Recent Geodynamics and Seismicity of Southeastern Tatarstan), Kazan: Fen, 2012.

  32. Kogan, M.G. and Steblov, G.M., Current global plate kinematics from GPS (1995–2007) with the plate consistent reference frame, J. Geophys. Res., 2008, vol. 113, p. B04416.

    Article  Google Scholar 

  33. Kuzikov, S.I., Methodical questions and accuracy problems of GPS observations by the example of the geodynamic proving ground in Bishkek, Izv., Phys. Solid Earth, 2014, vol. 50, no. 6, pp. 770–784.

    Article  Google Scholar 

  34. Kuzikov, S.I. and Mukhamediev, Sh.A., Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network, Izv., Phys. Solid Earth, 2010, vol. 46, no. 7, pp. 584–601.

    Article  Google Scholar 

  35. Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Recent Geodynamics and Geodynamic Risk Assessment in Natural Resources Management), Moscow: AEN, 1999.

  36. Kuzmin, Yu.O., Recent anomaly of soil geodynamics induced by small natural and anthropogenic impacts, Gorn. Inf.-Anal. Byull., 2002, no. 9, pp. 48–54.

  37. Kuzmin, Yu.O., Recent geodynamics of the faults and paradoxes of the rates of deformation, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 626–642.

    Article  Google Scholar 

  38. Kuzmin, Yu.O., Identification of the results of repeated geodetic observations for assessing the geodynamic hazard of subsoil use objects, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2018, vol. 23, no. 4, pp. 46–66.

    Google Scholar 

  39. Kuzmin, Yu.O., Induced deformations of fault zones, Izv., Phys. Solid Earth, 2019a, vol. 55, no. 5, pp. 753–765.

    Article  Google Scholar 

  40. Kuzmin, Yu.O., Recent geodynamics: From crustal movements to monitoring critical objects, Izv., Phys. Solid Earth, 2019b, vol. 55, no. 1, pp. 65–86.

    Article  Google Scholar 

  41. Kuzmin, Yu.O., Geodynamical evolution of the Earth’s crust of Central Asia and recent geodynamics of the Kopet Dag region, Turkmenistan, Izv., Phys. Solid Earth, 2021a, vol. 57, no. 1, pp. 131–139.

    Article  Google Scholar 

  42. Kuzmin, Yu.O., Deformation consequences of the development of oil and gas field, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 11, pp. 1479–1497. https://doi.org/10.1134/S0001433821110062

    Article  Google Scholar 

  43. Kuzmin, Yu.O., Recent volumetric deformations of fault zones, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 445–458. https://doi.org/10.1134/S1069351322040061

    Article  Google Scholar 

  44. Kuzmin, Yu.O., Deshcherevskii, A.V., Fattakhov, E.A., Kuz’min, D.K., Kazakov, A.A., and Aman, D.V., Inclinometric observations at the Korchagin deposit, Izv., Atmos. Ocean. Phys., 2018, vol. 53, no. 8, pp. 932–940. https://doi.org/10.1134/S0001433818080066

    Article  Google Scholar 

  45. Latynina, L.A. and Vasil’ev, I.M., Crustal Deformations Induced by Atmospheric Pressure, Izv., Phys. Solid Earth, 2001, vol. 37, no. 5, pp. 392–401.

    Google Scholar 

  46. Ljung, L., System Identification: Theory for the User, Upper Saddle River, N.J.: Prentice Hall, 1987; Moscow: Nauka, 1991.

  47. Levin, V.E., Bakhtiyarov, V.F., Titkov, N.N., Serovetnikov, S.S., Magus’kin, M.A., and Lander, A.V., Contemporary crustal movements (CCMs) in Kamchatka, Izv., Phys. Solid Earth, 2014, vol. 50, no. 6, pp. 732–751.

    Article  Google Scholar 

  48. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge: Cambridge Univ. Press, 1927.

    Google Scholar 

  49. Lukhnev, A.V., San’kov, V.A., Miroshnichenko, A.I., Ashurkov, S.V., and Calais, E., GPS rotation and strain rates in the Baikal–Mongolia region, Russ. Geol. Geophys., 2010, vol. 51, no. 7, pp. 785–793.

    Article  Google Scholar 

  50. Magnitskii, V.A. and Kalashnikova, I.V., On the inherited nature of contemporary movements of the Earth’s crust, Fiz. Zemli, 1978, no. 10, pp. 13–20.

  51. Mäkinen, J., Kaftan, V.I., Demiyanov, G.V., et al., Crustal uplift in eastern Fennoscandia: Results from repeated Russian and Finnish leveling, in EGU General Assembly, Vienna, 2008.

  52. Malkin, A.Ya., Rheology Fundamentals, Toronto: Canada: ChemTec Publ., 1994.

    Google Scholar 

  53. Maxwell, J.C., Matter and Motion, London: Society for Promoting Christian Knowledge; New York: Pott, Young and Co., 1876.

  54. Mikhailov, V.O., Nazaryan, A.N., Smirnov, V.B., Diament, M., Shapiro, N.M., Kiseleva, E.A., Tikhotskii, S.A., Polyakov, S.A., Smol’yaninova, E.I., and Timoshkina, E.P., Joint inversion of the differential satellite interferometry and GPS data: A case study of Altai (Chuia) earthquake of September 27, 2003, Izv., Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 91–103.

    Article  Google Scholar 

  55. Mikhailov, V.O., Kiseleva, E.A., Dmitriev, P.N., Golubev, V.I., Smol’yaninova, E.I., and Timoshkina, E.P., Estimation of the full vector of displacements of the Earth’s surface and man-made objects using radar satellite interferometry for regions of oil and gas field development, Geofiz. Issled., 2012. T. 13, no. 3, pp. 5–17.

  56. Mikhailov, V.O., Kiseleva, E.A., Smol’yaninova, E.I., Dmitriev, P.N., Golubeva, Yu.A., Isaev, Yu.S., Dorokhin, K.A., Timoshkina, E.P., Khairetdinov, S.A., and Golubev, V.I., Monitoring of landslide processes on a section of the North Caucasus railway using satellite radar interferometry in various wavelength ranges and an angle reflector, Geofiz. Issled., 2013. T. 14, no. 4, pp. 5–22.

  57. Molodenskii, M.S., Molodenskii, S.M., Molodenskii, D.S., and Begitova, T.A., On the solution stability in the problem of determining the time variations of the tidal responses of a medium in the vicinity of the sources of severe earthquakes, Izv., Phys. Solid Earth, 2017, vol. 53, no. 3, pp. 454–457.

    Article  Google Scholar 

  58. Nikolaev, A.V., Problems if induced seismicity, in Navedennaya seismichnost' (Induced Seismicity), Moscow: Nauka, 1994, pp. 5–15.

  59. Nilforoushan, F., Masson, F., Vernant, Ph., and Vigny, Ch., GPS network monitors the Arabia–Eurasia collision deformation in Iran, J. Geod., 2003, vol. 77, no. 7, pp. 411–422.

    Article  Google Scholar 

  60. Rabotnov, Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel (Elements of Hereditary Mechanics of Solids), Moscow: Nauka, 1977.

  61. Reiner, M., Deformation, Strain and Flow, London: H.K. Lewis and Co, 1960.

    Book  Google Scholar 

  62. Saberi, E., Yassaghi, A., and Djamour, Y., Application of geodetic leveling data on recent fault activity in Central Alborz, Iran, Geophys. J. Int., 2017, vol. 211, pp. 773–787.

    Article  Google Scholar 

  63. Sankov, V.A., Lukhnev, A.V., Miroshnichenko, A.I., Dobrynina, A.A., Ashurkov, S.V., Byzov, L.M., Dembelov, M.G., Calais, E., and Déverchère, J., Contemporary horizontal movements and seismicity of the South Baikal basin (Baikal Rift System), Izv., Phys. Solid Earth, 2014, vol. 50, no. 6, pp. 785–794.

    Article  Google Scholar 

  64. Segall, P., Induced stresses due to fluid extraction from axisymmetric reservoirs, Pure Appl. Geophys., 1992, vol. 139, pp. 535–560.

    Article  Google Scholar 

  65. Shirokov, I.A. and Anokhina, K.M., Relation between spatial–temporal variations in the Earth’s surface tilts and variations in atmospheric pressure, Izv., Phys. Solid Earth, 2003, vol. 39, no. 1, pp. 78–81.

    Google Scholar 

  66. Sidorov, V.A. and Kuzmin, Yu.O., Sovremennye dvizheniya zemnoi kory osadochnykh basseinov (Contemporary Crustal Movements of Sedimentary Basins), Moscow: Nauka, 1989.

  67. Sobolev, G.A., Zakarzhevskaya, N.A., and Migunov, I.N., Effect of meteorological conditions on tectonic deformations in hourly period range, Izv., Phys. Solid Earth, 2021, vol. 57, no. 6, pp. 834–848. https://doi.org/10.1134/S1069351321060094

    Article  Google Scholar 

  68. Solovitskii, A.N., Height theory in the study of geodynamics of the Earth’s crust, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2018, vol. 23, no. 2, pp. 34–42.

    Google Scholar 

  69. Steblov, G.M., Frolov, D.I., and Kuksenko, V.S., Kinematics of the Earth continental drift, Phys. Solid State, 2005, vol. 47, no. 6, pp. 1042–1047.

    Article  Google Scholar 

  70. Steblov, G.M., Vasilenko, N.F., Prytkov, A.S., Frolov, D.I., and Grekova, T.A., Dynamics of the Kuril–Kamchatka subduction zone from GPS data, Izv., Phys. Solid Earth, 2010, vol. 46, no. 5, pp. 440–445.

    Article  Google Scholar 

  71. Subsidence due to Fluid Withdrawal, Chilingarian, G.V., Donaldson, E.C., and Yen, T.F., Eds., Amsterdam: Elsevier, 1995.

    Google Scholar 

  72. Timofeev, V.Yu., Kalish, E.N., Stus’, Yu.F., Ardyukov, D.G., Valitov, M.G., Timofeev, A.V., Nosov, D.A., Sizikov, I.S., Boiko, E.V., Gornov, P.Yu., Kulinich, R.G., Kolpashchikova, T.N., Proshkina, Z.N., Nazarov, E.O., and Kolmogorov, V.G., Gravity and displacement variations in the areas of strong earthquakes in the east of Russia, Izv., Phys. Solid Earth, 2018, vol. 54, no. 3, pp. 430–443.

    Article  Google Scholar 

  73. Timoshenko, S. and Goodier, J.N., Theory of Elasticity, New York: McGraw-Hill, 1970.

    Google Scholar 

  74. Trifonov, V.G., Late quaternary tectonic movements of Western and Central Asia, Geol. Soc. Am. Bull., 1978, vol. 89, pp. 1059–1072.

    Article  Google Scholar 

  75. Trubitsyn, V.P., Rheology of the mantle and tectonics of the oceanic lithospheric plates, Izv., Phys. Solid Earth, 2012, vol. 48, no. 6, pp. 467–485.

    Article  Google Scholar 

  76. Tsurkis, I.Ya., Two components of the baric tilt of elements of the Earth surface: The case of a low-angle topography, Seism. Instrum., 2021, vol. 56, no. 1, pp. 17–26.

    Article  Google Scholar 

  77. Tsurkis, I.Ya., Effect of topography on thermoelastic deformations of the Earth’s core: Temperature field corrections, Seism. Instrum., 2022, vol. 58, no. Suppl. 2, pp. S234–S246. https://doi.org/10.3103/S0747923922080138

  78. Turcotte, D.L. and Shubert, G., Geodynamics, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  79. Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chery, J., Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and Northern Oman, Geophys. J. Int., 2004, vol. 157, pp. 381–398.

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kuzmin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, Y.O. Physical Foundations of Recent Geodynamics. Izv. Atmos. Ocean. Phys. 59, 857–911 (2023). https://doi.org/10.1134/S0001433823080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823080078

Keywords:

Navigation