Skip to main content
Log in

The green synthesis of biocompatible nanocomposites and its application for the on-target delivery of the anticancer drugs

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The main obstacle in the treatment of cancer is the non-selectivity of chemotherapy between infected and healthy cells. The purpose of the study was to develop on target drug delivery system for the Rhabdomyosarcoma cells (RD cells). The co-precipitation method was employed for the synthesis of Cobalt ferrite nanoparticles (CFNPs) and Polyvinyl alcohol (PVA) coated CFNPs. The cytotoxicity of these nanomaterials was tested against the RD cell lines. The photosensitizer was used as an initiator of photodamage on RD cell lines. The cellular uptake of 5-Aminolaevulinic Acid (ALA) was maximum after 5 h of in vitro incubation. The PVA/CFNPs loaded with ALA (250 nM) and a laser dose of 55 J/cm2, showed 52% cell viability, while PVA/CFNPs loaded with both ALA and Dacarbazine (DTIC) followed by a laser dose showed 35% cell viability. This confirms the plausibility of DTIC-loaded CFNPs as a drug delivery agent for cancer drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be available on proper request.

References

  1. M.C. Stevens, A. Rey, N. Bouvet, C. Ellershaw, F. Flamant, J.L. Habrand, H.B. Marsden, H. Martelli, J.S. de Toledo, R.D. Spicer, Treatment of nonmetastatic rhabdomyosarcoma in childhood and adolescence: third study of the International Society of Paediatric Oncology—SIOP Malignant Mesenchymal Tumor 89. J. Clin. Oncol. 23(12), 2618–2628 (2005)

    Article  PubMed  Google Scholar 

  2. S. Sawcer, G. Hellenthal, M. Pirinen, C.C. Spencer, N.A. Patsopoulos, L. Moutsianas, A. Dilthey, Z. Su, C. Freeman, S.E. Hunt, Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359), 214 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. Ruoslahti, Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 110, 3–12 (2017)

    Article  PubMed  Google Scholar 

  4. J. Shi, B. Wang, L. Wang, T. Lu, Y. Fu, H. Zhang, Z. Zhang, Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J. Control. Release. 235, 245–258 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Xin, Q. Huang, J.-Q. Tang, X.-Y. Hou, P. Zhang, L.Z. Zhang, G. Jiang, Nanoscale drug delivery for targeted chemotherapy. Cancer Lett. 379(1), 24–31 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. T. Minko, P. Kopečková, J. Kopeček, Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int. J. Cancer 86(1), 108–117 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. H. Fan, A.K. Dash, Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants. Int. J. Pharm. 213(1–2), 103–116 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. J.M. Reid, M.J. Kuffel, J.K. Miller, R. Rios, M.M. Ames, Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin. Cancer Res. 5(8), 2192–2197 (1999)

    CAS  PubMed  Google Scholar 

  9. E. Pharma: IV Busulfex (busulfan) injection product monograph ESP Pharma, Edison, NJ. (2003).

  10. Y. Bassiouni, L. Faddah, Nanocarrier-based drugs: the future promise for treatment of breast cancer. J. Appl. Pharm. Sci. 2, 225–232 (2012)

    Google Scholar 

  11. N.L. Oleinick, R.L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 1(1), 1–21 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. R.R. Allison, C.H. Sibata, Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn. Photodyn. Ther. 7, 61–75 (2010)

    Article  CAS  Google Scholar 

  13. J. Shi, Z. Chen, L. Wang, B. Wang, L. Xu, L. Hou, Z. Zhang, A tumor-specific cleavable nanosystem of PEG-modified C60@ Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater. 29, 282–297 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. C. Tomuleasa, C. Braicu, A. Irimie, L. Craciun, I. Berindan-Neagoe, Nanopharmacology in translational hematology and oncology. Int. J. Nanomed. 9, 3465 (2014)

    CAS  Google Scholar 

  15. K. Jain, N.K. Mehra, N.K. Jain, Potentials and emerging trends in nanopharmacology. Curr. Opin. Pharmacol. 15, 97–106 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Fujita, K. Kuwano, T. Ochiya, Development of small RNA delivery systems for lung cancer therapy. Int. J. Mol. Sci. 16(3), 5254–5270 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N.T. Thanh, L.A. Green, Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3), 213–230 (2010)

    Article  CAS  Google Scholar 

  18. B. Petrushev, S. Boca, T. Simon, C. Berce, I. Frinc, D. Dima, S. Selicean, G.-A. Gafencu, A. Tanase, M. Zdrenghea, Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy. Int. J. Nanomed. 11, 641 (2016)

    CAS  Google Scholar 

  19. Y. Jia, M. Yuan, H. Yuan, X. Huang, X. Sui, X. Cui, F. Tang, J. Peng, J. Chen, S. Lu, Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int. J. Nanomed. 7, 1697 (2012)

    CAS  Google Scholar 

  20. A.B. Seabra, T. Pasquôto, A.C.F. Ferrarini, M.D.C. Santos, P.S. Haddad, R. de Lima, Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated-and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem. Res. Toxicol. 27(7), 1207–1218 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. B. Aldar, R. Pinjari, N. Burange, Electric and dielectric behavior of Ni–Co–Cd ferrite. IOSR J. Appl. Phys. 6(4), 23–26 (2014)

    Article  Google Scholar 

  22. S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)

    CAS  PubMed  Google Scholar 

  23. I. Willner, B. Willner, Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure Appl. Chem. 74(9), 1773–1783 (2002)

    Article  CAS  Google Scholar 

  24. P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15(6), 1945–1951 (1999)

    Article  CAS  Google Scholar 

  25. N. Fauconnier, J. Pons, J. Roger, A. Bee, Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 194(2), 427–433 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. S. Mohapatra, N. Pramanik, S.K. Ghosh, P. Pramanik, Synthesis and characterization of ultrafine poly (vinylalcohol phosphate) coated magnetite nanoparticles. J. Nanosci. Nanotechnol. 6(3), 823–829 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. A. Petri-Fink, M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, H. Hofmann, Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cell. Biomaterials 26(15), 2685–2694 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. J. Volatron, J. Kolosnjaj-Tabi, Y. Javed, Q.L. Vuong, Y. Gossuin, S. Neveu, N. Luciani, M. Hémadi, F. Carn, D. Alloyeau, F. Gazeau, Physiological remediation of cobalt ferrite nanoparticles by ferritin. Sci. Rep. 7(1), 40075 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. F. Cavalieri, E. Chiessi, R. Villa, L. Vigano, N. Zaffaroni, M.F. Telling, G. Paradossi, Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules 9(7), 1967–1973 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. X.F. Huang, Y.Y. Lin, L.Y. Kong, Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J. Integr. Plant Biol. 50(6), 717–722 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. B.Y. Kim, Z.G. Cui, S.R. Lee, S.J. Kim, H.K. Kang, Y.K. Lee, D.B. Park, Effects of Asparagus officinalis extracts on liver cell toxicity and ethanol metabolism. J. Food Sci. 74(7), H204–H208 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. M. Zakir, A. Khurshid, M.I. Khan, A. Khattak, M.A. Khan, The application of aluminium phthalocyanine AlPs-4-mediated photodynamic therapy against human soft tissue sarcoma (RMS) cell line. J. Porphyr. Phthalocyanines 25(02), 102–119 (2021)

    Article  CAS  Google Scholar 

  33. A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A: Physicochem. Eng. Asp. 369(1), 27–33 (2010)

    Article  CAS  Google Scholar 

  34. D. Sheny, J. Mathew, D. Philip, Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 79(1), 254–262 (2011)

    Article  ADS  CAS  Google Scholar 

  35. L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. Lima, A.C.B. Delbem, D.R. Monteiro, Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel) 7(2), 46 (2018)

    Article  PubMed  Google Scholar 

  36. A. Begum, R. Knv, R. Dutt, K. Giri, K. Sindhu, U. Fathima, G. Gowthami, J. Kumar, N. Naveen, S. Shaffath, Phytochemical screening and thin layer chromatography of indian Asparagus officinalis linn. Int. J. Adv. Res. 5, 1520–1528 (2017)

    Article  CAS  Google Scholar 

  37. S. Anjum, R. Tufail, K. Rashid, R. Zia, S. Riaz, Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles. J. Magn. Magn. Mater. 432, 198–207 (2017)

    Article  ADS  CAS  Google Scholar 

  38. A.S. Athithan, J. Jeyasundari, Y. Jacob, Biological synthesis, physico-chemical characterization of undoped and Co doped α-Fe2O3 nanoparticles using Tribulus terrestris leaf extract and its antidiabetic, antimicrobial applications. Adv. Nat. Sci.: Nanosci. Nanotechnol. 12(4), 045003 (2021)

    ADS  CAS  Google Scholar 

  39. B. Turakhia, P. Turakhia, S. Shah, Green synthesis of zero valent iron nanoparticles from Spinacia oleracea (spinach) and its application in waste water treatment. IAETSD J. Adv. Res. Appl. Sci. 5(1), 46–51 (2018)

    Google Scholar 

  40. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J. Am. Chem. Soc. 126(1), 273–279 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. R. Topkaya, U. Kurtan, Y. Junejo, A. Baykal, Sol–gel auto combustion synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: its magnetic characterization. Mater. Res. Bull. 48(9), 3247–3253 (2013)

    Article  CAS  Google Scholar 

  42. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng.: C. 33(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  43. M. Muthiah, I.-K. Park, C.-S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31(8), 1224–1236 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. S. Shafiu, R. Topkaya, A. Baykal, M.S. Toprak, Facile synthesis of PVA–MnFe2O4 nanocomposite: its magnetic investigation. Mater. Res. Bull. 48(10), 4066–4071 (2013)

    Article  CAS  Google Scholar 

  45. S. Mirzaee, S.F. Shayesteh, S. Mahdavifar, Anisotropy investigation of cobalt ferrite nanoparticles embedded in polyvinyl alcohol matrix: a Monte Carlo study. Polymer 55(16), 3713–3719 (2014)

    Article  CAS  Google Scholar 

  46. W.-B. Chu, J.-W. Yang, T.-J. Liu, C. Tiu, J. Guo, The effects of pH, molecular weight and degree of hydrolysis of poly (vinyl alcohol) on slot die coating of PVA suspensions of TiO2 and SiO2. Colloids Surf. A: Physicochem. Eng. Asp. 302(1–3), 1–10 (2007)

    Article  CAS  Google Scholar 

  47. M. Chastellain, A. Petri, H. Hofmann, Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid Interface Sci. 278(2), 353–360 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. A. Salunkhe, V. Khot, M. Phadatare, S. Pawar, Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J. Alloys Compd. 514, 91–96 (2012)

    Article  CAS  Google Scholar 

  49. A. Salunkhe, V. Khot, N. Thorat, M. Phadatare, C. Sathish, D. Dhawale, S. Pawar, Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci. 264, 598–604 (2013)

    Article  ADS  CAS  Google Scholar 

  50. K. Venkatesan, D.R. Babu, M.P.K. Bai, R. Supriya, R. Vidya, S. Madeswaran, P. Anandan, M. Arivanandhan, Y. Hayakawa, Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications. Int. J. Nanomed. 10(1), 189 (2015)

    CAS  Google Scholar 

  51. S. Kanagesan, M. Hashim, S. Tamilselvan, N. Alitheen, I. Ismail, A. Hajalilou, K. Ahsanul, Synthesis, characterization, and cytotoxicity of iron oxide nanoparticles. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/710432

    Article  Google Scholar 

  52. S. Sadighian, K. Rostamizadeh, H. Hosseini-Monfared, M. Hamidi, Doxorubicin-conjugated core–shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B: Biointerfaces 117, 406–413 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. L. Wu, L. Chen, F. Liu, X. Qi, Y. Ge, S. Shen, Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf. B: Biointerfaces 152, 440–448 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. B. Dutta, N.G. Shetake, B. Barick, K. Barick, B. Pandey, K. Priyadarsini, P. Hassan, pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids Surf. B: Biointerfaces 162, 163–171 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. E. Crescenzi, L. Varriale, M. Iovino, A. Chiaviello, B.M. Veneziani, G. Palumbo, Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol. Cancer Ther. 3(5), 537–544 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. C. Lanzi, P. Perego, R. Supino, S. Romanelli, T. Pensa, N. Carenini, I. Viano, D. Colangelo, R. Leone, P. Apostoli, Decreased drug accumulation and increased tolerance to DNA damage in tumor cells with a low level of cisplatin resistance. Biochem. Pharmacol. 55(8), 1247–1254 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zakir.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakir, M., Khurshid, A., Rasheed, M.A. et al. The green synthesis of biocompatible nanocomposites and its application for the on-target delivery of the anticancer drugs. Journal of Materials Research 39, 325–341 (2024). https://doi.org/10.1557/s43578-023-01208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01208-1

Keywords

Navigation