Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2024

Effect of indented growth rings on spruce wood mechanical properties and subsequent violin dynamics

  • Romain Viala ORCID logo EMAIL logo , Jérémy Cabaret , Marjan Sedighi-Gilani , Vincent Placet and Scott Cogan
From the journal Holzforschung

Abstract

In this study, the influence of “bear claw” or indented growth ring anatomical patterns on the vibro-mechanical behavior of spruce wood have been investigated, particularly in the context of utilizing these singularities/specific features for the construction of violins. By employing vibrometry and modal analysis followed by finite element model updating, the vibro-mechanical properties (specific stiffness in longitudinal (L) and radial (R) directions and shear LR plane, and associated damping) of the indented growth rings spruce were identified and implemented in a numerical model of a violin. Results have revealed a significant increase in specific moduli in R direction and LR plane and decrease in L direction of spruce wood in the presence of indented growth rings, therefore accompanied by a reduction in anisotropic elastic properties, in comparison to spruce without these patterns. These properties led to changes in violin dynamics, globally increasing resonance frequencies and changing the shape of the vibration modes. The simulated frequency response function of the violin at the bridge suggested a global shift of the admittance of the bridge toward higher frequencies. These results suggest a potential impact of indented growth rings of spruce on the acoustic properties of instruments.


Corresponding author: Romain Viala, Institut Technologique Européen des Métiers de la Musique – ITEMM, Le Mans, 72000, France; and Laboratoire d’Acoustique de l’Université du Mans – LAUM CNRS 6613, 72085 Le Mans Cedex 09, France, E-mail:

Funding source: ITEMM

Funding source: FEMTO-ST Institute

Acknowledgments

The authors would like to acknowledge the sawmill “Le bois de Lutherie” which provided wood samples.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: The authors would like to acknowledge the support provided by ITEMM and FEMTO-ST Institute for funding this research.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Alkadri, A., Carlier, C., Wahyudi, I., Gril, J., Langbour, P., and Brémaud, I. (2018). Relationships between anatomical and vibrational properties of wavy sycamore maple. IAWA J. 39: 63–86, https://doi.org/10.1163/22941932-20170185.Search in Google Scholar

Allemang, R.J. and Brown, D.L. (1982) A correlation coefficient for modal vector analysis. In: First international modal analysis conference, Orlando, pp. 110–116.Search in Google Scholar

Brémaud, I., Amusant, N., Minato, K., Gril, J., and Thibaut, B. (2011a). Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Sci Technol 45: 461–472.10.1007/s00226-010-0337-3Search in Google Scholar

Brémaud, I., Cabrolier, P., Gril, J., Clair, B., Gérard, J., Minato, K., and Thibaut, B. (2010). Identification of anisotropic vibrational properties of Padauk wood with interlocked grain. Wood Sci. Technol. 44: 355–367, https://doi.org/10.1007/s00226-010-0348-0.Search in Google Scholar

Brémaud, I., El Kaïm, Y., Guibal, D., Minato, K., Thibaut, B., and Gril, J. (2012). Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Ann. For. Sci. 69: 373–386, https://doi.org/10.1007/s13595-011-0166-z.Search in Google Scholar

Brémaud, I., Gril, J., and Thibaut, B. (2011b). Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Sci. Technol. 45: 735–754, https://doi.org/10.1007/s00226-010-0393-8.Search in Google Scholar

Bucur, V. (1992). Le bois de Lutherie. J. Phys. IV 02: 8, https://doi.org/10.1051/jp4:1992109.10.1051/jp4:1992109Search in Google Scholar

Bucur, Voichita (2016). Handbook of Materials for string musical instruments. Springer, Switzerland.10.1007/978-3-319-32080-9Search in Google Scholar

Buksnowitz, C., Teischinger, A., Müller, U., Pahler, A., and Evans, R. (2007). Resonance wood [Picea abies] -evaluation and prediction of violin makers’ quality-grading. J. Acoust. Soc. Am. 121: 2384–2395, https://doi.org/10.1121/1.2434756.Search in Google Scholar PubMed

Buksnowitz, C., Evans, R., Müller, U., and Teischinger, A. (2012). Indented rings (hazel growth) of Norway spruce reduce anisotropy of mechanical properties. Wood Sci. Technol. 46: 1239–1246, https://doi.org/10.1007/s00226-012-0480-0.Search in Google Scholar

Carlier, C., Brémaud, I., and Gril, J. (2014) Violin making “tonewood”: comparing makers ’ empirical expertise with wood structural/visual and acoustical properties. In: Symposium on musical acoustics ISMA2014, Le Mans, pp. 325–330.Search in Google Scholar

Chaigne, A. and Kergomard, J. (2008). Acoustique des instruments de musique, Belin, Available at: https://hal.archives-ouvertes.fr/hal-00871263.Search in Google Scholar

Elie, B. (2012). Caractérisation vibratoire et acoustique des instruments à cordes, Ph.D. thesis. Université du Maine, Available at: http://tel.archives-ouvertes.fr/tel-00833885/.Search in Google Scholar

Fritz, C., Curtin, J., Poitevineau, J., Morrel-Samuels, P., and Tao, F.-C. (2012). Player preferences among new and old violins. Proc. Natl. Acad. Sci. U. S. A. 109: 760–763, https://doi.org/10.1073/pnas.1114999109.Search in Google Scholar PubMed PubMed Central

Glass Samuel, V. and Zelinka, S.L. (2010) Wood handbook, chapter 04: moisture relations and physical properties of wood. In: Wood handbook : wood as an engineering material (GTR-190), pp. 1–19, Available at: http://www.treesearch.fs.fed.us/pubs/37428.Search in Google Scholar

Gough, C. (2013) Vibrational modes of the violin family. In: Proceedings of the stockholm music acoustics conference, SMAC 2013, pp. 66–74.Search in Google Scholar

Guitard, D. and El Amri, F. (1987). Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux. Ann. Sci. For. 44: 335–358, https://doi.org/10.1051/forest:19870305.10.1051/forest:19870305Search in Google Scholar

Haines, D.W. (1980). On musical instrument wood. J. catgut Acoust. Soc. Am. 33: 19–23.Search in Google Scholar

Hutchins, C.M. and Voskuil, D. (1993). Mode tuning for the violin maker. CAS J. 2: 5–9.Search in Google Scholar

Jansson, E.V., Barczewski, R., and Kabała, A. (2016). On the violin bridge-hill – comparison of experimental testing and FEM. Vib. Phys. Syst. 27: 151–160.Search in Google Scholar

Lev-Yadun, S. and Aloni, R. (1991). An experimental method of inducing ’hazel’ wood in Pinus halepensis (pinacae). Iawa Bull. 12: 445–451, https://doi.org/10.1163/22941932-90000548.Search in Google Scholar

Nia, H.T., Jain, A.D., Liu, Y., Alam, M.-R., Barnas, R., and Makris, N.C. (2015). The evolution of air resonance power efficiency in the violin and its ancestors. Proc. R. Soc. A 471: 1–15, https://doi.org/10.1098/rspa.2014.0905.Search in Google Scholar PubMed PubMed Central

Nocetti, M. and Romagnoli, M. (2008). Seasonal cambial activity of spruce (picea abies karst.) with indented rings in the Paneveggio Forest (Trento, Italy). Acta Biol. Crac. Ser. Bot. 50: 27–34.Search in Google Scholar

Ohtani, J., Fukazawa, K., and Fukumorita, T. (1987). SEM observations on indented rings. IAWA Bull. 8: 1113–1124, https://doi.org/10.1163/22941932-90001038.Search in Google Scholar

Ono, T. (1996). Frequency responses of wood for musical instruments in relation to the vibrational properties. J. Acoust. Soc. Japan E 17: 183–193, https://doi.org/10.1250/ast.17.183.Search in Google Scholar

Racko, V. and Cunderlik, I. (2006) Selected mechanical properties of ”hazel wood” in Norway spruce (picea abies L.). In: Wood structure and properties’ 06. Arbora Publishers, Zvolen, pp. 369–371.Search in Google Scholar

Racko, V., Misikov, O., and Seman, B. (2014) Effect the indentation of the annual growth rings in Norway spruce (picea abies L.) on shear strength – preliminary study. In: Proceedings of the 57th international convention of society of wood Science and technology’, number january, Zvolen.Search in Google Scholar

Račko, V., Kačík, F., Mišíková, O., Hlaváč, P., Čunderlík, I., and Ďurkovič, J. (2018). The onset of hazel wood formation in Norway spruce (Picea abies [ L .] Karst .) stems. Ann. For. Sci. 75: 1–11, https://doi.org/10.1007/s13595-018-0757-z.Search in Google Scholar

Romagnoli, M., Bernabei, M., and Codipietro, G. (2003). Density variations in spruce wood with indented rings (Picea abies karst). Holz Roh- Werkst. 61: 311–312, https://doi.org/10.1007/s00107-003-0392-7.Search in Google Scholar

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676–682, https://doi.org/10.1038/nmeth.2019.Search in Google Scholar PubMed PubMed Central

Schweingruber, F.H. (2008). Wood structure and environment. Springer. T. E. Timell State University of New York College of Environment Science and Forestry, Syracuse, NY 13210, USA.Search in Google Scholar

Sinclair, A.N. and Farshad, M. (1987). A comparison of three methods for determining elastic constants of wood. J. Test. Eval. 15: 77–86, https://doi.org/10.1520/jte10986j.Search in Google Scholar

Viala, R. (2018). Towards a model-based decision support tool for stringed musical instrument making, Ph.D. thesis. Université Bourgogne Franche-comté, Available at: https://hal.archives-ouvertes.fr/tel-02877895.Search in Google Scholar

Viala, R., Placet, V., Cogan, S., and Foltête, E. (2016). Model-based effects screening of stringed instruments. In: Conference proceedings of the society for experimental Mechanics Series, Vol. 3, pp. 151–157.10.1007/978-3-319-29754-5_14Search in Google Scholar

Viala, R., Placet, V., and Cogan, S. (2019) Model-based quantification of the effect of wood modifications on the dynamics of the violin. In: International symposium on music acoustics, ISMA 2019 (september).Search in Google Scholar

Viala, R., Placet, V., and Cogan, S. (2020). Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading. J. Cult. Herit. 42: 108–116, https://doi.org/10.1016/j.culher.2019.09.004.Search in Google Scholar

Wegst, U.G.K. (2006). Wood for sound. Am. J. Bot. 93: 1439–1448, https://doi.org/10.3732/ajb.93.10.1439.Search in Google Scholar PubMed

Woodhouse, J. (2005). On the bridge-hill of the violin. Acta Acust. United Acust. 91: 155–165.Search in Google Scholar

Yaman, B. (2007). Anatomy of Lebanon cedar (Cedrus libani A. Rich.) wood with indented growth rings. Acta Biol. Crac. Ser. Bot. 49: 19–23.Search in Google Scholar

Received: 2023-08-30
Accepted: 2024-01-05
Published Online: 2024-01-18
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2023-0090/html
Scroll to top button