Skip to main content
Log in

Vacuum-ultraviolet dispersive wave emission driven by phase-locked pulse pairs in a gas-filled hollow-core fiber: a numerical study

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Phase-locked laser pulse pairs are important tools in many advanced spectroscopy researches. This work investigated the propagation dynamics of a few-cycle pulse pair in a gas-filled hollow-core fiber (HCF), aiming at generation of ultrashort pulse pair, tunable in the vacuum ultraviolet (VUV) range through resonant dispersive wave emission. Although separated temporally, the 2nd pulse in the pulse pair sees a thin plasma (pre-plasma) in the wake of the leading pulse. While the pre-plasma generally reduces the 2nd pulse’s VUV conversion efficiency with the increase of electron density, it is found that for wavelengths shorter than 140 nm, the efficiency is largely suppressed, but for longer VUV wavelengths the pre-plasma has small effects. Analysis reveals that the different response to pre-plasma is determined by the magnitude of Kerr effect, instead of the electron density. It is further shown that the suppression of the VUV output can be compensated by increasing the 2nd pulse’s energy depending on the experimental implementations. Other factors that affect the VUV spectral fringes are also analyzed. This work paves the way to achieving unique VUV sources for many cutting-edge researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. S. Mukamel, Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51(1), 691–729 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Femtosecond phase-coherent two-dimensional spectroscopy. Science 300(5625), 1553–1555 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. H.J.B. Marroux, A.P. Fidler, D.M. Neumark, S.R. Leone, Multidimensional spectroscopy with attosecond extreme ultraviolet and shaped near-infrared pulses. Sci. Adv. 4(9), eaau3783 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. L. Koll, L. Maikowski, L. Drescher, T. Witting, M.J.J. Vrakking, Experimental control of quantum-mechanical entanglement in an attosecond pump-probe experiment. Phys. Rev. Lett. 128(4), 043201 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. V. Stummer, T. Flory, M. Schneller, E. Kaksis, M. Zeiler, A. Pugzlys, A. Baltuska, "Spectral Peak Recovery in Parametrically Amplified THz-Repetition-Rate Bursts," arXiv:2305.16067v1 (2023)

  6. Y. Chang, S. Yu, Q. Li, Y. Yu, H. Wang, S. Su, Z. Chen, L. Che, X. Wang, W. Zhang, D. Dai, G. Wu, K. Yuan, X. Yang, Tunable VUV photochemistry using vacuum ultraviolet free electron laser combined with H-atom Rydberg tagging time-of-flight spectroscopy. Rev. Sci. Instrum. 89, 063113 (2018)

    Article  ADS  PubMed  Google Scholar 

  7. Z. Li, L. Yan, P. Zuo, L. Xie, Z. Li, B. Jin, Development of tabletop femtosecond vacuum ultraviolet laser source based on four-wave mixing techniques. Chin. J. Lasers 48, 1201007 (2021)

    Google Scholar 

  8. J. Biegert, F. Calegari, N. Dudovich, F. Quere, M.J.J. Vrakking, Attosecond technology(ies) and science. J. Phys. B At. Mol. Opt. Phys. 54(7), 070201 (2021)

    Article  Google Scholar 

  9. L. Koll, L. Maikowski, L. Drescher, M.J.J. Vrakking, T. Witting, Phase-locking of time-delayed attosecond XUV pulse pairs. Opt. Express 30(5), 7082–7095 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. J. Travers, T. Grigorova, C. Brahms, F. Belli, High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers. Nat. Photon. 13, 547 (2019)

    Article  ADS  CAS  Google Scholar 

  11. A. Lekosiotis, C. Brahms, F. Belli, T. Grigorova, J. Travers, Ultrafast circularly polarized pulses tunable from the vacuum to deep ultraviolet. Opt. Lett. 46, 4057–4060 (2021)

    Article  ADS  PubMed  Google Scholar 

  12. C. Brahms, T. Grigorova, F. Belli, J. Travers, High-energy ultraviolet dispersive-wave emission in compact hollow capillary systems. Opt. Lett. 44, 2990–2993 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. D. Novoa, M. Cassataro, J.C. Travers, P. St, J. Russell, Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers. Phys. Rev. Lett. 115(3), 033901 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. F. Köttig, D. Novoa, F. Tani, M. Günendi, M. Cassataro, J.C. Travers, P.S.T.J. Russell, Mid-infrared dispersive wave generation in gasfilled photonic crystal fibre by transient ionizationdriven changes in dispersion. Nat. Commun. 8, 813 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. J. Andreasen, M. Kolesik, Mid-infrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods. Phys. Rev. E 87, 053303 (2013)

    Article  ADS  CAS  Google Scholar 

  16. J. Andreasen, M. Kolesik, Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations. Phys. Rev. E 86, 036706 (2012)

    Article  ADS  CAS  Google Scholar 

  17. D. Wang, Y. Leng, Soliton dynamics in a piecewise gas-filled hollow-core fiber for efficient dispersive wave emission in the vacuum-ultraviolet range. Phys. Rev. A 106(5), 053520 (2022)

    Article  ADS  CAS  Google Scholar 

  18. A. Ermolov, K. Mak, M. Frosz, J. Travers, P. Russell, Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 92(3), 033821 (2015)

    Article  ADS  Google Scholar 

  19. C. Brée, A. Demircan, G. Steinmeyer, Method for Computing the nonlinear refractive index via Keldysh theory. IEEE J. Quant. Electron. 46(4), 433–437 (2010)

    Article  ADS  Google Scholar 

  20. A.M. Perelomov, V.S. Popov, Sov. Phys. JETP 23, 924 (1966)

    ADS  Google Scholar 

  21. P. Holzer, W. Chang, J. Travers, A. Nazarkin, J. Nold, N. Joly, M. Saleh, F. Biancalana, P. Russell, Femtosecond nonlinear fiber optics in the ionization regime. Phys. Rev. Lett. 107(20), 203901 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. C. Brahms, J. Travers, Timing and energy stability of resonant dispersive wave emission in gas-filled hollow-core waveguides. J. Phys. Photonics 3, 025004 (2021)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (NSFC) (61521093, 61925507, 61635012, 11604351), National Key Research and Development Program of China (2017YFE0123700), Program of Shanghai Academic/Technology Research Leader (18XD1404200), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB1603), Major Project Science and Technology Commission of Shanghai Municipality (STCSM) (2017SHZDZX02).

Author information

Authors and Affiliations

Authors

Contributions

D.W. carried out the simulations, analyzed the data and wrote the main manuscript. Y.L. supervised the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ding Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Leng, Y. Vacuum-ultraviolet dispersive wave emission driven by phase-locked pulse pairs in a gas-filled hollow-core fiber: a numerical study. Appl. Phys. B 130, 30 (2024). https://doi.org/10.1007/s00340-023-08167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08167-9

Navigation