Skip to main content
Log in

Simulation of a Fuel Reactor for Chemical Looping Combustion with Oxygen Uncoupling

  • PROCESSES AND APPARATUSES OF CHEMICAL TECHNOLOGY
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemical looping with oxygen uncoupling (CLOU), an environmentally friendly method for power generation, has been extensively developed in recent years. The main disadvantages of this method, associated with incomplete fuel combustion, ash withdrawal, and dust entrainment, can be solved by changing the structural and process parameters. The simplest fuel reactor for the combustion of methane gas is considered using computer simulation. The gas-phase pressure distribution and its velocity gradient in transverse and longitudinal cross-sections of the reactor are studied in the present work. Using the obtained data, the maximum power of the fuel reactor for implementing the CLOU process is calculated and the requirements for an oxygen accumulator to achieve the claimed performance are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Electricity generation, capacity, and sales in the United States—U. S. Energy Information Administration (EIA). https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php. Cited September 24, 2021.

  2. World Electricity Generation—World Energy Data. https://www.worldenergydata.org/world-electricity-generation/. Cited September 24, 2021.

  3. World and Russian Energy Development Forecast 2019, Makarov, A.A., Mitrova, T.A. and Kalugin, V.A., Eds., Moscow: ERI RAS, Moscow Sch. Manage. SKOLKOVO, 2019.

    Google Scholar 

  4. Mattisson, T., Materials for chemical-looping with oxygen uncoupling, Int. Scholarly Res. Not., 2013, vol. 2013, article no. 526375, pp. 1–19. https://doi.org/10.1155/2013/526375

  5. Lyngfelt, A. and Linderholm C., Chemical-looping combustion of solid fuels—Technology overview and recent operational results in 100 kW unit, Energy Procedia, 2014, vol. 63, pp. 98–112. https://doi.org/10.1016/j.egypro.2014.11.011

    Article  CAS  Google Scholar 

  6. Song, T. and Shen, L., Review of reactor for chemical looping combustion of solid fuels, Int. J. Greenhouse Gas Control, 2018, vol. 76, pp. 92–110. https://doi.org/10.1016/j.ijggc.2018.06.004

    Article  CAS  Google Scholar 

  7. Shishkin, R.A. and Suntsov, A.Y., La2CuO4 as a promising oxygen carrier for CLOU process, AIP Conf. Proc., 2020, vol. 2313, article no. 060024. https://doi.org/10.1063/5.0032207

    Article  CAS  Google Scholar 

  8. Noorman, S., Gallucci, F., van Sint Annaland, M., and Kuipers, J.A.M., A theoretical investigation of CLC in packed beds. Part 2: Reactor model, Chem. Eng. J., 2011, vol. 167, no. 1, pp. 369–376. https://doi.org/10.1016/j.cej.2011.01.012

    Article  CAS  Google Scholar 

  9. Parker, J.M., CFD model for the simulation of chemical looping combustion, Powder Technol., 2014, vol. 265, pp. 47–53. https://doi.org/10.1016/j.powtec.2014.01.027

    Article  CAS  Google Scholar 

  10. Mahalatkar, K., Kuhlman, J., Huckaby, E.D., and O’Brien, T., CFD simulation of a chemical-looping fuel reactor utilizing solid fuel, Chem. Eng. Sci., 2011, vol. 66, no. 16, pp. 3617–3627. https://doi.org/10.1016/j.ces.2011.04.025

    Article  CAS  Google Scholar 

  11. Shuai, W., Huilun, L., Feixiang, Z., and Guodong, L., CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes, Chem. Eng. J., 2014, vol. 236, pp. 121–130. https://doi.org/10.1016/j.cej.2013.09.033

    Article  CAS  Google Scholar 

  12. Peng, Z., Doroodchi, E., Alghamdi, Y.A., Shah, K., Luo, C., and Moghtaderi, B., CFD–DEM simulation of solid circulation rate in the cold flow model of chemical looping systems, Chem. Eng. Res. Des., 2015, vol. 95, pp. 262–280. https://doi.org/10.1016/j.cherd.2014.11.005

    Article  CAS  Google Scholar 

  13. Su, M., Zhao, H., and Ma, J., Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed, Energy Convers. Manage., 2015, vol. 105, pp. 1–12. https://doi.org/10.1016/j.enconman.2015.07.042

    Article  Google Scholar 

  14. Geng, C. Zhong, W., Shao, Y., Chen, D., and Jin, B., Computational study of solid circulation in chemical-looping combustion reactor model, Powder Technol., 2015, vol. 276, pp. 144–155. https://doi.org/10.1016/j.powtec.2015.01.077

    Article  CAS  Google Scholar 

  15. Kruggel-Emden, H., Rickelt, S., Stepanek, F., and Munjiza, A., Development and testing of an interconnected multiphase CFD-model for chemical looping combustion, Chem. Eng. Sci., 2010, vol. 65, no. 16, pp. 4732–4745. https://doi.org/10.1016/j.ces.2010.05.022

    Article  CAS  Google Scholar 

  16. Jung, J. and Gamwo, I.K. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling, Powder Technol., 2008, vol. 183, no. 3, pp. 401–409. https://doi.org/10.1016/j.powtec.2008.01.019

    Article  CAS  Google Scholar 

  17. Shao, Y., Agarwal, R.K., Wang, X., and Jin, B., Numerical simulation of a 3D full loop iG-CLC system including a two-stage counter-flow moving bed air reactor, Chem. Eng. Sci., 2020, vol. 217, article no. 115502. https://doi.org/10.1016/j.ces.2020.115502

    Article  CAS  Google Scholar 

  18. Mancuso, L., Cloete, S., Chiesa, P., and Amini, S., Economic assessment of packed bed chemical looping combustion and suitable benchmarks, Int. J. Greenhouse Gas Control, 2017, vol. 64, pp. 223–233. https://doi.org/10.1016/j.ijggc.2017.07.015

    Article  CAS  Google Scholar 

  19. Vartiainen, E., Masson, G., Breyer, C., Moser, D., and Medina, E.R., Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity, Prog. Photovoltaics: Res. Appl. Progress, 2020, vol. 28, no. 6, pp. 439–453. https://doi.org/10.1002/pip.3189

    Article  Google Scholar 

  20. Leion, H., Larring, Y., Bakken, E., Bredesen, R., Mattisson, T., and Lyngfelt, A., Use of CaMn0.875Ti0.125O3 as oxygen carrier in chemical–looping with oxygen uncoupling, Energy Fuels, 2009, vol. 23, no. 10, pp. 5276–5283. https://doi.org/10.1021/ef900444d

    Article  CAS  Google Scholar 

  21. Leion, H., Mattisson, T., and Lyngfelt, A., Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels, Energy Procedia, 2009, vol. 1, no. 1, pp. 447–453. https://doi.org/10.1016/j.egypro.2009.01.060

    Article  CAS  Google Scholar 

  22. Molinari, M., Tompsett, D.A., Parker, S.C., Azough, F., and Freer, R., Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO (3-δ), J. Mater. Chem. A, 2014, vol. 2, no. 34, pp. 14109–14117. https://doi.org/10.1039/C4TA01514B

    Article  CAS  Google Scholar 

  23. Mastronardo, E., Qian, X., Coronado, J.M., and Haile, S., Fe-doped CaMnO3 for thermochemical heat storage application, AIP Conf. Proc., 2019, vol. 2126, article no. 210005, pp. 1–8. https://doi.org/10.1063/1.5117754

  24. Wang, Y., Sui, Y., Wang, X., Su, W., Liu, X., and Fan, H.J., Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation, Acta Mater., 2010, vol. 58, no. 19, pp. 6306–6316. https://doi.org/10.1016/j.actamat.2010.07.052

    Article  CAS  Google Scholar 

  25. Kudo, K., Noji, T., Koike, Y., Nishizaki, T., and Kobayashi, N., Single-crystal growth and thermal conductivity of the four-leg spin-ladder system La2Cu2O5, J. Phys. Soc. Jpn., 2003, vol. 72, no. 10, pp. 2551–2555. https://doi.org/10.1143/JPSJ.72.2551

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 19-79-10147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Shishkin.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by K. Utegenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkin, R.A. Simulation of a Fuel Reactor for Chemical Looping Combustion with Oxygen Uncoupling. Theor Found Chem Eng 57, 1215–1224 (2023). https://doi.org/10.1134/S0040579523050299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523050299

Keywords:

Navigation