Skip to main content
Log in

Prediction of the Anticancer Activity of the Fullerene Nanostructure’s Derivatives: DFT Calculations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this work, the [2 + 2] cycloaddition of fullerenes with the carcinogen BaPe was examined using the DFT method, with the aim of inhibiting the carcinogenic process of the latter. The increase in the electrophilic character of the reagents by the functionalization with electron-withdrawing groups was shown. By the functionalization of C60, an increase in the dipole moment and consequently in the solubility of these reagents was shown. Also, a significant improvement in this solubility for these reagents by the [2 + 2] cycloaddition with BaPe increasing the dipole moment was noted. The most favored electrophilic-nucleophilic interaction between C2 and C3 has been rationalized. In the gaseous phase, very asynchronous concerted mechanisms by functionalization were demonstrated for this type of fullerene cycloaddition. In addition, an insufficiency of the calculations for the prediction of the inhibition of the mutagenic process by forming the C60CONH2–2.5BaPe complex (the major product) was noted and therefore the inclusion of the effects of biological solvent (water) was mandatory. In the presence of water, a significant decrease in the activation barriers and reaction energies compared to those of the gaseous phase was shown, therefore, a kinetic and thermodynamic preference of the C60CONH2–2.5BaPe complex from this cycloaddition, is deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: The next Generation, Cell, 2011, vol. 144, no. 5, pp. 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein, B. and Kinzler, K.W., Cancer genes and the pathways they control, Nat. Med., 2004, vol. 10, no. 8, pp. 789–799. https://doi.org/10.1038/nm1087

    Article  CAS  PubMed  Google Scholar 

  3. Gelboin, H.V., Benzo[alpha]pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes, Physiol. Rev., 1980, vol. 60, no. 4, pp. 1107–1166. https://doi.org/10.1152/physrev.1980.60.4.1107

    Article  CAS  PubMed  Google Scholar 

  4. Wen, S., Zhao, J., Sheng, G., Fu, J., and Peng, P., Photocatalytic reactions of pyrene at TiO2/water interfaces, Chemosphere, 2003, vol. 50, no. 1, pp. 111–119. https://doi.org/10.1016/S0045-6535(02)00420-4

    Article  CAS  PubMed  Google Scholar 

  5. Ueng, T.-H., Wang, H.-W., Huang, Y.-P., and Hung, C.-C., Antiestrogenic effects of motorcycle exhaust particulate in MCF-7 human breast cancer cells and immature female rats, Arch. Environ. Contam. Toxicol., 2004, vol. 46, no. 4, pp. 454–462. https://doi.org/10.1007/s00244-003-2263-y

    Article  CAS  PubMed  Google Scholar 

  6. IARC Monographs on the Evaluation of Carcinogenic Risk of the Chemical to Man, vol. 3: Certain polycyclic aromatic hydrocarbons and heterocyclic compounds, Lyon: IARC, 1972, pp. 45–268.

  7. Jeffy, B.D., Chen, E.J., Gudas, J.M., and Romagnolo, D.F., Disruption of cell cycle kinetics by benzo[a]pyrene: Inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2, Neoplasia, 2000, vol. 2, no. 5, pp. 460–470. https://doi.org/10.1038/sj.neo.7900104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sadikovic, B. and Rodenhiser, D.I., Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells, Toxicol. Appl. Pharmacol., 2006, vol. 216, no. 3, pp. 458–468. https://doi.org/10.1016/j.taap.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  9. Shi, Q., Wang, L.-E., Bondy, M.L., Brewster, A., Singletary, S.E., and Wei, Q., Reduced DNA repair of benzo[a]pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis, 2004, vol. 25, no. 9, pp. 1695–1700. https://doi.org/10.1093/carcin/bgh167

    Article  CAS  PubMed  Google Scholar 

  10. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, vol. 92: Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, Lyon: IARC, 2010.fq

  11. Huetz, P. and Poux, V., Carcinogenicity of benzo[a]pyrene diol epoxide stereoisomers: A linear free energy relationship study, J. Mol. Struct.: THEOCHEM, 2006, vol. 764, nos. 1–3, pp. 167–176. https://doi.org/10.1016/j.theochem.2006.02.005

  12. Corsaro, A., Librando, V., Chiacchio, U., and Pistarà, V., 1,3-Dipolar cycloaddition reactions of polycyclic aromatic hydrocarbons with 3,5-dichloro-2,4,6-trimethyl- and 2,4,6-trimethylbenzonitrile oxide, Tetrahedron, 1996, vol. 52, no. 40, pp. 13027–13034. https://doi.org/10.1016/0040-4020(96)00783-1

    Article  CAS  Google Scholar 

  13. Wilson, S.R. Nanomedicine: Fullerene and carbon nanotube biology, in Perspectives of Fullerene Nanotechnology, Ōsawa, E., Ed., Dordrecht: Springer, 2002, pp 155–163. https://doi.org/10.1007/0-306-47621-5_14163

    Book  Google Scholar 

  14. Brabec, C.J., Sariciftci, N.S., and Hummelen, C., Plastic Solar Cells, Adv. Funct. Mater., 2001, vol. 11, no. 1, pp. 15–26. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

    Article  CAS  Google Scholar 

  15. Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W., and Bonn, G.K., Medicinal Applications of Fullerenes, Int. J. Nanomed., 2007, vol. 2, no. 4, pp. 639–649.

    CAS  Google Scholar 

  16. Hirsch, A. and Brettreich, M., Fullerenes. Chemistry and Reactions, Weinheim: Wiley, 2005.

    Google Scholar 

  17. Krusic, P.J., Wasserman, E., Keizer, P.N., Morton, J.R., and Preston, K.F., Radical reactions of C60, Science, 1991, vol. 254, no. 535, pp. 1183–1185. https://doi.org/10.1126/science.254.5035.1183

    Article  CAS  PubMed  Google Scholar 

  18. Gharbi, N., Pressac, M., Hadchouel, M., Szwarc, H., Wilson, S.R., and Moussa, F., [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity, Nano Lett., 2005, vol. 5, no. 12, pp. 2578–2585. https://doi.org/10.1021/nl051866b

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, G., Yin, F., Duan, J., and Li, G., Synthesis and properties of novel water-soluble fullerene–glycine derivatives as new materials for cancer therapy, J. Mater. Sci.: Mater. Med., 2015, vol. 26, no. 1, article no. 24. https://doi.org/10.1007/s10856-014-5348-4

    Article  CAS  Google Scholar 

  20. Thotakura, N., Sharma, G., Singh, B., Kumar, V., and Raza, K., Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: An explorative study, Artif. Cells, Nanomed., Biotechnol., 2018, vol. 46, no. 8, pp. 1763–1772. https://doi.org/10.1080/21691401.2017.1392314

    Article  CAS  PubMed  Google Scholar 

  21. Raza, K., Thotakura, N., Kumar, P., Joshi, M., Bhushan, S., Bhatia, A., Kumar, V., Malik, R., Sharma, G., Guru, S.K., and Katare, O.P., C60-Fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile, Int. J. Pharm., 2015, vol. 495, no. 1, pp. 551–559. https://doi.org/10.1016/j.ijpharm.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh, F.-Y., Zhilenkov, A.V., Voronov, I.I., Khakina, E.A., Mischenko, D.V., Troshin, P.A., and Hsu, S., Water-soluble fullerene derivatives as brain medicine: Surface chemistry determines if they are neuroprotective and antitumor, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 13, pp. 11482–11492. https://doi.org/10.1021/acsami.7b01077

    Article  CAS  PubMed  Google Scholar 

  23. Brettreich, M. and Hirsch, A., A highly water-soluble dendro[60]fullerene, Tetrahedron Lett., 1998, vol. 39, no. 18, pp. 2731–2734. https://doi.org/10.1016/S0040-4039(98)00491-2

    Article  CAS  Google Scholar 

  24. Hajiahmadi, Z., Tavangar, Z. and Behzadi, H., A DFT study of the reaction between benzopyrene epoxide and C60 derivatives as possible anticancer activity, Polycyclic Aromat. Compd., 2021, vol. 41, no. 3, pp. 593–603. https://doi.org/10.1080/10406638.2019.1607412

    Article  CAS  Google Scholar 

  25. Martínez, J.P., Langa, F., Bickelhaupt, F.M., Osuna, S., and Sola, M., (4+ 2) and (2+ 2) cycloadditions of benzyne to C60 and zig-zag single-walled carbon nanotubes: The effect of the curvature, J. Phys. Chem. C, 2016, vol. 120, no. 3, pp. 1716–1726. https://doi.org/10.1021/acs.jpcc.5b11499

    Article  CAS  Google Scholar 

  26. Hoke, S.H., Molstad, J., Dilettato, D., Jay, M.J., Carlson, D., Kahr, B., and Cooks, R. G., Reaction of fullerenes and benzyne, J. Org. Chem., 1992, vol. 57, no. 19, pp. 5069–5071. https://doi.org/10.1021/jo00045a012

    Article  CAS  Google Scholar 

  27. Gohlke, H. and Klebe, G., Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors, Angew. Chem., Int. Ed., 2002, vol. 41, no. 15, pp. 2644–2676. https://doi.org/10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O

    Article  CAS  Google Scholar 

  28. Sham, L.J. and Kohn, W., One-particle properties of an inhomogeneous interacting electron gas, Phys. Rev., 1966, vol. 145, no. 2, pp. 561–567. https://doi.org/10.1103/PhysRev.145.561

    Article  CAS  Google Scholar 

  29. Koopmans, T., Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1934, vol. 1, nos. 1–6, pp. 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

  30. Parr, R.G., von Szentpály, L., and Liu, S., Electrophilicity index, J. Am. Chem. Soc., 1999, vol. 121, no. 9, pp. 1922–1924. doi.org/https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  31. Domingo, L.R. and Pérez, P., The nucleophilicity N index in organic chemistry, Org. Biomol. Chem., 2011, vol. 9, no. 20, pp. 7168–7175. https://doi.org/10.1039/C1OB05856H

    Article  CAS  PubMed  Google Scholar 

  32. Domingo, L.R., Aurell, M.J., Pérez, P., and Contreras, R., Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels–Alder reactions, J. Phys. Chem. A, 2002, vol. 106, no. 29, pp. 6871–6875. https://doi.org/10.1021/jp020715j

    Article  CAS  Google Scholar 

  33. Pérez, P., Domingo, L.R., Duque-Noreña, M., and Chamorro, E., A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions, J. Mol. Struct.: THEOCHEM, 2009, vol. 895, nos. 1–3, pp. 86–91. https://doi.org/10.1016/j.theochem.2008.10.014

  34. Yang, W. and Mortier, W.J., The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc., 1986, vol. 108, no. 19, pp. 5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  35. Domingo, L.R., Pérez, P., and Sáez, J.A., Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions, RSC Adv., 2013, vol. 3, no. 5, pp. 1486–1494. https://doi.org/10.1039/C2RA22886F

  36. Parr, R. and Yang, W., Density-Functional Theory of Atoms and Molecules, Breslow, R., Goodenough, J.B., Halpern, J., and Rowlinson, J.S., Eds., New York: Oxford University, 1989.

    Google Scholar 

  37. Ziegler, T., Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem. Rev., 1991, vol. 91, no. 5, pp. 651–667. https://doi.org/10.1021/cr00005a001

    Article  CAS  Google Scholar 

  38. Lee, C., Yang, W., and Parr, R.G., Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density, Phys. Rev. B, 1988, vol. 37, no. 2, pp. 785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  39. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652. doi.org/https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  40. Hehre, W.J., Radom, L., von Schleyer, P.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.

    Google Scholar 

  41. Schlegel, H.B., Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, vol. 3, no. 2, pp. 214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  42. Schlegel, H.B., Geometry optimization on potential energy surfaces, in Advanced Series in Physical Chemistry; Modern Electronic Structure Theory, Yarkony, D.R., Ed., Singapore: World Scientific Publishing, 1995, vol. 2, pp. 459–500. https://doi.org/10.1142/9789812832108_0008

    Book  Google Scholar 

  43. Foster, J.P. and Weinhold, F., Natural hybrid orbitals, J. Am. Chem. Soc., 1980, vol. 102, no. 24, pp. 7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  44. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 2009, vol. 113, no. 18, pp. 6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09: Revision D.01, Wallingford, CT: Gaussian Inc., 2009.

    Google Scholar 

  46. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Solid C60: A new form of carbon, Nature, 1990, vol. 347, no. 6291, pp. 354–358. https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  47. Domingo, L.R., A new C–C bond formation model based on the quantum chemical topology of electron density, RSC Adv., 2014, vol. 4, no. 61, pp. 32415–32428. https://doi.org/10.1039/C4RA04280H

    Article  CAS  Google Scholar 

  48. Fullerenes: Chemistry, Physics, and Technology, Kadish, K.M. and Ruoff, R.S., Eds., New York: Wiley, 2000.

    Google Scholar 

  49. Andrievsky, G.V., Kosevich, M.V., Vovk, O.M., Shelkovsky, V.S., and Vashchenko, L.A., Are fullerenes soluble in water? Proc. 187th Meeting of the Electrochemical Society “Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials”, Ruoff, R.S. and Kadish, K.M., Eds., Reno, 1995, pp. 1591–1602.

  50. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 2003, vol. 24, no. 6, pp. 669–681. https://doi.org/10.1002/jcc.10189

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Chemouri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemouri, H., Deddouche, N., Zair, M.E. et al. Prediction of the Anticancer Activity of the Fullerene Nanostructure’s Derivatives: DFT Calculations. Theor Found Chem Eng 57, 876–888 (2023). https://doi.org/10.1134/S004057952305038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952305038X

Keywords:

Navigation