Skip to main content

Advertisement

Log in

Simulating long-term soil carbon storage, greenhouse gas balance, and crop yields in semi-arid cropping systems using DayCent model

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Crop-fallow systems are common in the arid and semi-arid Southwestern USA. The long fallow periods between crops reduce annual carbon (C) inputs and soil organic carbon (SOC) accumulation. Cover cropping is promoted to reduce the fallow period and increase residue C returned to the soil, but the long-term SOC sequestration and greenhouse gas (GHG) mitigation potential of cover cropping are not well understood for dry regions. This study quantifies long-term changes in SOC sequestration and net greenhouse gas (GHG) balance using the DayCent ecosystem model. We estimated SOC storage and nitrous oxide (N2O) and methane (CH4) emissions in no-till winter wheat (Triticum aestivum L.)–sorghum (Sorghum bicolor L. Moench)–fallow rotations with pea (Pisum sativum L.) and oat (Avena sativa L.) as cover crops and no-cover crop control. The DayCent simulation results on crop yields were evaluated with six years of observations and achieved R2 values of 0.66 and 0.81 for wheat grain and biomass yields, respectively. Similarly, the model captured the overall differences in cover crop biomass production. The simulations conducted for three decades showed a significantly greater SOC storage with cover cropping (26–36%) than without cover crops. Simulation of GHG emissions showed that oats as a cover crop could mitigate N2O emissions compared to control. Soil N2O emissions were greater with peas than with other cover crops, suggesting a smaller contribution of legume cover crops in reducing net GHG balance. Cover cropping could be a good strategy for long-term SOC storage in semi-arid regions, while their GHG mitigation potential varied with cover crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla M, Hastings A, Helmy M, Prescher A, Osborne B, Lanigan G, Forristal D, Killi D, Maratha P, Williams M, Rueangritsarakul K, Smith P, Nolan P, Jones MB (2014) Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 223–225:9–20. https://doi.org/10.1016/j.geoderma.2014.01.030

    Article  CAS  ADS  Google Scholar 

  • Acharya P, Ghimire R, Cho Y, Thapa VR, Sainju UM (2022a) Soil profile carbon, nitrogen, and crop yields affected by cover crops in semiarid regions. Nutr Cycling Agroecosyst 122(2):191–203. https://doi.org/10.1007/s10705-022-10198-1

    Article  CAS  Google Scholar 

  • Acharya P, Ghimire R, Paye WS, Ganguli AC, DelGrosso SJ (2022b) Net greenhouse gas balance with cover crops in semi-arid irrigated cropping systems. Sci Rep 12(1):12386. https://doi.org/10.1038/s41598-022-16719-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Amsili JP, Kaye JP (2021) Root traits of cover crops and carbon inputs in an organic grain rotation. Renew Agric Food Syst 36(2):182–191

    Article  Google Scholar 

  • Barton L, Murphy DV, Butterbach-Bahl K (2013) Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric Ecosyst Environ 167:23–32

    Article  CAS  Google Scholar 

  • Basche AD, Miguez FE, Kaspar TC, Castellano MJ (2014) Do cover crops increase or decrease nitrous oxide emissions? A Meta-Anal J Soil Water Conserv 69(6):471–482. https://doi.org/10.2489/jswc.69.6.471

    Article  Google Scholar 

  • Basche AD, Archontoulis SV, Kaspar TC, Jaynes DB, Parkin TB, Miguez FE (2016) Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agric Ecosyst Environ 218:95–106. https://doi.org/10.1016/j.agee.2015.11.011

    Article  Google Scholar 

  • Bayer C, Gomes J, Zanatta JA, Vieira FCB, Dieckow J (2016) Mitigating greenhouse gas emissions from a subtropical Ultisol by using long-term no-tillage in combination with legume cover crops. Soil Till Res 161:86–94. https://doi.org/10.1016/j.still.2016.03.011

    Article  Google Scholar 

  • Bista P, Machado S, Ghimire R, Del Grosso SJ, Reyes-Fox M (2016) Simulating soil organic carbon in a wheat-fallow system using the Daycent model. Agron. J. 108(6):2554–2565. https://doi.org/10.2134/agronj2016.04.0202

    Article  CAS  Google Scholar 

  • Bista P, Norton U, Ghimire R, Norton JB (2017) Effects of tillage system on greenhouse gas fluxes and soil mineral nitrogen in wheat (Triticum aestivum, L.)-fallow during drought. J Arid Environ 147:103–113

    Article  Google Scholar 

  • Blanco-Canqui H, Klocke NL, Schlegel AJ, Stone LR, Rice CW (2010) Impacts of deficit irrigation on carbon sequestration and soil physical properties under no-till. Soil Sci Soc Am J 74(4):1301–1309. https://doi.org/10.2136/sssaj2009.0364

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Shaver TM, Lindquist JL, Shapiro CA, Elmore RW, Francis CA, Hergert GW (2015) Cover crops and ecosystem services: insights from studies in temperate soils. Agron J 107(6):2449–2474

    Article  CAS  Google Scholar 

  • Cheng K, Ogle SM, Parton WJ, Pan G (2014) Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model. Glob Change Biol 20(3):948–962. https://doi.org/10.1111/gcb.12368

    Article  ADS  Google Scholar 

  • Cunfer G (2005) On the Great Plains: agriculture and environment. Texas A&M University Press, London

    Google Scholar 

  • Deines JM, Schipanski ME, Golden B, Zipper SC, Nozari S, Rottler C, Guerrero B, Sharda V (2020) Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: land use suitability and regional economic impacts. Agric Water Manag 233:106061. https://doi.org/10.1016/j.agwat.2020.106061

    Article  Google Scholar 

  • Del Grosso S, Ojima D, Parton W, Mosier A, Peterson G, Schimel D (2002) Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ Pollut 1987(116):S75–S83. https://doi.org/10.1016/S0269-7491(01)00260-3

    Article  Google Scholar 

  • Del Grosso SJ, Parton W, Keough C, Reyes-Fox M (2011) Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and application. In: Ahuja LR, Ma L (eds) Methods of introducing system models into agricultural research. Wiley. https://doi.org/10.2134/advagricsystmodel2.c5

    Chapter  Google Scholar 

  • Della Chiesa T, Del Grosso SJ, Hartman MD, Parton WJ, Echarte L, Yahdjian L, Piñeiro G (2022) A novel mechanism to simulate intercropping and relay cropping using the DayCent model. Ecol Modell 465:109869. https://doi.org/10.1016/j.ecolmodel.2021.109869

    Article  CAS  Google Scholar 

  • Gautam S, Mishra U, Scown CD, Zhang Y (2020) Sorghum biomass production in the continental United States and its potential impacts on soil organic carbon and nitrous oxide emissions. GCB Bioenergy 12(10):878–890. https://doi.org/10.1111/gcbb.12736

    Article  CAS  Google Scholar 

  • Ghimire R, Machado S, Rhinhart K (2015) Long-term crop residue and nitrogen management effects on soil profile carbon and nitrogen in wheat-fallow systems. Agron J 107(6):2230–2240. https://doi.org/10.2134/agronj14.0601

    Article  CAS  Google Scholar 

  • Ghimire B, Ghimire R, VanLeeuwen D, Mesbah A (2017) Cover crop residue amount and quality effects on soil organic carbon mineralization. Sustainability. https://doi.org/10.3390/su9122316

    Article  Google Scholar 

  • Ghimire R, Ghimire B, Mesbah AO, Sainju UM, Idowu OJ (2019) Soil health response of cover crops in winter wheat-fallow system. Agron J 111(4):2108–2115. https://doi.org/10.2134/agronj2018.08.0492

    Article  CAS  Google Scholar 

  • Grant BB, Smith WN, Campbell CA, Desjardins RL, Lemke RL, Kröbel R, McConkey BG, Smith EG, Lafond GP (2016) Comparison of DayCent and DNDC models: case studies using data from long‐term experiments on the Canadian prairies. In: Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation, 6, pp 21–57

  • Gurung RB, Ogle SM, Breidt FJ, Williams SA, Parton WJ (2020) Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty. Geoderma 376:114529

    Article  CAS  ADS  Google Scholar 

  • Gurung RB, Ogle SM, Breidt FJ, Williams S, Zhang Y, Del Grosso SJ, Parton WJ, Paustian K (2021) Modeling ammonia volatilization from urea application to agricultural soils in the DayCent model. Nutr Cycl Agroecosyst 119:259–273

    Article  CAS  Google Scholar 

  • Hartman MD, Merchant ER, Parton WJ, Gutmann MP, Lutz SM, Williams SA (2011) Impact of historical land-use changes on greenhouse gas exchange in the U.S. Great Plains 1883–2003. Ecolog Appl 21(4):1105–1119. https://doi.org/10.1890/10-0036.1

    Article  Google Scholar 

  • He W, Grant BB, Jing Q, Lemke R, St. Luce M, Jiang R, Qian B, Campbell CA, VanderZaag A, Zou G, Smith WN (2021) Measuring and modeling soil carbon sequestration under diverse cropping systems in the semiarid prairies of western Canada. J. Cleaner Prod 328:129614. https://doi.org/10.1016/j.jclepro.2021.129614

    Article  CAS  Google Scholar 

  • IPCC (2022) Climate Change 2022: mitigation of climate change. In: Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds). Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926

  • Jian J, Du X, Reiter MS, Stewart RD (2020) A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem 143:107735

    Article  CAS  Google Scholar 

  • Kaye JP, Quemada M (2017) Using cover crops to mitigate and adapt to climate change. A review. Agron Sustain Dev. https://doi.org/10.1007/s13593-016-0410-x

    Article  Google Scholar 

  • Kessavalou A, Doran JW, Mosier AR, Drijber RA (1998) Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system Soil Sci. Soc Am J 27(5):1105–1116

    CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lal R (2007) Carbon management in agricultural soils. Mitig Adapt Strateg Global Change 12(2):303–322. https://doi.org/10.1007/s11027-006-9036-7

    Article  Google Scholar 

  • Mazzoncini M, Sapkota TB, Barberi P, Antichi D, Risaliti R (2011) Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil till Res 114:165–174. https://doi.org/10.1016/j.still.2011.05.001

    Article  Google Scholar 

  • McClelland SC, Paustian K, Williams S, Schipanski ME (2021) Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools. Agric Syst 191:103151. https://doi.org/10.1016/j.agsy.2021.103151

    Article  Google Scholar 

  • Mitchell JP, Shrestha A, Mathesius K, Scow KM, Southard RJ, Haney RL, Schmidt R, Munk DS, Horwath WR (2017) Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Till Res 165:325–335. https://doi.org/10.1016/j.still.2016.09.001

    Article  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35(4):1584–1598

    Article  CAS  PubMed  Google Scholar 

  • Mubvumba P, DeLaune PB, Hons FM (2021) Soil water dynamics under a warm-season cover crop mixture in continuous wheat. Soil Till Res 206:104823

    Article  Google Scholar 

  • Myhre et al (2013) Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change – The physical science basis working group i contribution to the fifth assessment report of the intergovernmental panel on climate change anthropogenic and natural radiative forcing. Cambridge University Press 659–740

    Google Scholar 

  • Nicoloso RS, Rice CW (2021) Intensification of no-till agricultural systems: an opportunity for carbon sequestration. Soil Sci Soc Am J 85(5):1395–1409. https://doi.org/10.1002/saj2.20260

    Article  CAS  Google Scholar 

  • Oliveira DMS, Williams S, Cerri CEP, Paustian K (2017) Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. GCB Bioenergy 9(9):1436–1446. https://doi.org/10.1111/gcbb.12427

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Abs Soil Sci Soc Am J 51(5):1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x

    Article  CAS  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163. https://doi.org/10.1023/A:1006271331703

    Article  CAS  Google Scholar 

  • Paye WS, Acharya P, Ghimire R (2022) Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crops Res 283:108552. https://doi.org/10.1016/j.fcr.2022.108552

    Article  Google Scholar 

  • Perrone S, Grossman J, Liebman A, Sooksa-nguan T, Gutknecht J (2020) Nitrogen fixation and productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. Nutr Cycl Agroecosyst 117:61–76

    Article  Google Scholar 

  • Ruis SJ, Blanco-Canqui H, Creech CF, Koehler-Cole K, Elmore RW, Francis CA (2019) Cover crop biomass production in temperate agroecozones. Agron J 111(4):1535–1551

    Article  Google Scholar 

  • Sainju UM (2020) Net global warming potential and greenhouse gas intensity. Soil Sci Soc Am J 84(5):1393–1404. https://doi.org/10.1002/saj2.20152

    Article  CAS  Google Scholar 

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci 114(36):9575–9580

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Scheer C, Del Grosso SJ, Parton WJ, Rowlings DW, Grace PR (2014) Modeling nitrous oxide emissions from irrigated agriculture: testing DayCent with high-frequency measurements. Ecol Appl 24(3):528–538. https://doi.org/10.1890/13-0570.1

    Article  PubMed  Google Scholar 

  • Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G (2002) Surface soil physical properties after twelve years of dryland no-till management. Soil Sci Soc Am J 66:1296–1303. https://doi.org/10.2136/sssaj2002.1296

    Article  CAS  Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina AE, Muelle T, Paeton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81(1):153–225. https://doi.org/10.1016/S0016-7061(97)00087-6

    Article  ADS  Google Scholar 

  • Smith DR, Hernandez-Ramirez G, Armstrong SD, Bucholtz DL, Stott DE (2011) Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions. Soil Sci Soc Am J 75(3):1070–1082

    Article  CAS  Google Scholar 

  • Stehfest E, Heistermann M, Priess JA, Ojima DS, Alcamo J (2007) Simulation of global crop production with the ecosystem model DayCent. Ecol Modell 209(2–4):203–219. https://doi.org/10.1016/j.ecolmodel.2007.06.028

    Article  Google Scholar 

  • Thapa VR, Ghimire R, Marsalis MA (2021) Cover crops for resilience of a limited-irrigation winter wheat–sorghum–fallow rotation: soil carbon, nitrogen, and sorghum yield responses. Agronomy 11(4):23. https://doi.org/10.3390/agronomy11040762

    Article  CAS  Google Scholar 

  • Thapa VR, Ghimire R, VanLeeuwen D, Acosta-Martínez V, Shukla M (2022) Response of soil organic matter to cover cropping in water-limited environments. Geoderma 406:115497. https://doi.org/10.1016/j.geoderma.2021.115497

    Article  CAS  ADS  Google Scholar 

  • Thapa VR, Ghimire R, Adhikari KP, Lamichhane S (2023) Soil organic carbon sequestration in arid and semi-arid regions by conservation systems: a review. J Arid Environ 217:105028. https://doi.org/10.1016/j.jaridenv.2023.105028

    Article  Google Scholar 

  • The long-term strategy of the united states: pathways to net-zero greenhouse gas emissions by 2050. Published by the United States Department of State and the United States Executive Office of the President, Washington DC. November 2021. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf)

  • Tonitto C, Woodbury PB, McLellan EL (2018) Defining a best practice methodology for modeling the environmental performance of agriculture. Environ Sci Policy 87:64–73

    Article  Google Scholar 

  • Tribouillois H, Constantin J, Justes E (2018) Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob Change Biol 24(6):2513–2529. https://doi.org/10.1111/gcb.14091

    Article  ADS  Google Scholar 

  • USDA Soil Survey Staff (2022). Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

  • Wollenberg E, Richards M, Smith P, Havlík P, Obersteiner M, Tubiello FN, Herold M, Gerber P, Carter S, Reisinger A, Vuuren DPV, Dickie A, Neufeldt H, Sander BO, Wassmann R, Sommer R, Amonette JE, Falcucci A, Herrero M, Opio C, Roman-Cuesta RS, Stehfest E, Westhoek H, Ortiz-Monasterio I, Sapkota T, Rufino MC, Thornton PK, Verchot L, West C, Soussana J-F, Baedeker T, Sadler M, Vermeulen S, Campbell BM (2016) Reducing emissions from agriculture to meet the 2 °C target. Glob Change Biol 22(12):3859–3864. https://doi.org/10.1111/gcb.13340

    Article  ADS  Google Scholar 

  • Zhang Y, Suyker A, Paustian K (2018) Improved crop canopy and water balance dynamics for agroecosystem modeling using DayCent. Agron J 110(2):511–524. https://doi.org/10.2134/agronj2017.06.0328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by project No. 2022-67019-36106 of the USDA National Institute for Food and Agriculture, Agriculture and Food Research Initiative and partly from the Healthy Soils Program of the New Mexico Department of Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

PB and RG secured funding, PB and MH calibrated and evaluated the model, PB wrote the original manuscript, VRT and RG collected field data, SJG contributed to improving the model performance, and all authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Prakriti Bista.

Ethics declarations

Conflict of interest

The authors declare no competing and conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bista, P., Hartman, M.D., DelGrosso, S.J. et al. Simulating long-term soil carbon storage, greenhouse gas balance, and crop yields in semi-arid cropping systems using DayCent model. Nutr Cycl Agroecosyst 128, 99–114 (2024). https://doi.org/10.1007/s10705-023-10335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-023-10335-4

Keywords

Navigation