Skip to main content
Log in

Genomewide architecture of adaptation in experimentally evolved Drosophila characterized by widespread pleiotropy

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Dissecting the molecular basis of adaptation remains elusive despite our ability to sequence genomes and transcriptomes. At present, most genomic research on selection focusses on signatures of selective sweeps in patterns of heterozygosity. Other research has studied changes in patterns of gene expression in evolving populations but has not usually identified the genetic changes causing these shifts in expression. Here we attempt to go beyond these approaches by using machine learning tools to explore interactions between the genome, transcriptome, and life-history phenotypes in two groups of 10 experimentally evolved Drosophila populations subjected to selection for opposing life history patterns. Our findings indicate that genomic and transcriptomic data have comparable power for predicting phenotypic characters. Looking at the relationships between the genome and the transcriptome, we find that the expression of individual transcripts is influenced by many sites across the genome that are differentiated between the two types of populations. We find that single-nucleotide polymorphisms (SNPs), transposable elements, and indels are powerful predictors of gene expression. Collectively, our results suggest that the genomic architecture of adaptation is highly polygenic with extensive pleiotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Anders S., McCarthy D. J., Chen Y., Okoniewski M., Smyth G. K., Huber W. and Robinson M. D. 2013 Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786.

    Article  PubMed  Google Scholar 

  • Arbeitman M. N., Furlong E. E., Imam F., Johnson E., Null B. H., Baker B. S. et al. 2002 Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275.

    Article  CAS  PubMed  Google Scholar 

  • Barter T. T., Greenspan Z. S., Phillips M. A., Mueller L. D., Rose M. R. and Ranz J. R. 2019 Transcriptomics with and without ageing in Drosophila. Biogerontology 20, 699–710.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y. and Hochberg Y. 1995 Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methods 57, 289–300.

    Google Scholar 

  • Bennett A. F. and Lenski R. E. 1999 Experimental evolution and its role in evolutionary physiology. Am. Zool. 39, 346–362.

    Article  Google Scholar 

  • Braendle C., Heyland A. and Flatt T. 2011 Integrating mechanistic and evolutionary analysis of life history variation. In Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs (ed. T. Flatt and A. Heyland), pp. 1–10. Oxford University Press, New York.

    Google Scholar 

  • Brideau N. J., Flores H. A., Wang J., Maheshwari S., Wang X. and Barbas D. A. 2006 Two Dobzhanky-Mueller genes interact to cause hybrid lethality in Drosophila. Science 314, 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  • Burke M. K., Barter T. T., Cabral L. G., Kezos J. N., Phillips M. A., Rutledge G. A. et al. 2016 Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster. Evolution 70, 2085–2098.

    Article  PubMed  Google Scholar 

  • Carroll S. B. 2000 Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Carroll S. B., Grenier J. K., Weatherbee S. D. 2001 From DNA to diversity: molecular genetics and the evolution of animal design, Blackwell Publishing, Malden.

    Google Scholar 

  • Casacuberta E. and Gonzalez J. 2013 The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517.

    Article  CAS  PubMed  Google Scholar 

  • Casas-Vila N., Bluhm A., Sayols S., Dinges N., Dejung M., Altenhein T. et al. 2017 The developmental proteome of Drosophila melanogaster. Genome Res. 27, 1273–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chénais B., Caruso A., Hiard S. and Casse H. 2012 The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene 509, 7–15.

    Article  PubMed  Google Scholar 

  • de Los Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D. and Calus M. P. 2013 Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193, 327–345.

    Article  Google Scholar 

  • Fabian D. K., Dönertas H. M., Fuenyealba M., Partridge L. and Thornton J. M. 2021 Transposable element landscape in Drosophila populations selected for longevity. Genome Biol. Evol., https://doi.org/10.1093/gbe/evab031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher R. A. 1930 The genetical theory of natural selection, Oxford University Press, Oxford.

    Book  Google Scholar 

  • Frachon L., Libourel C., Villoutreix R., Carrère S., Glorieux C., Huard-Chauveau C. et al. 2017 Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat. Ecol. Evol. 1, 1551–1561.

    Article  PubMed  Google Scholar 

  • Garland T., Rose M. R. 2009 Experimental evolution, University of California Press, Berkeley.

    Book  Google Scholar 

  • Ghavi-Helm Y., Klein F. A., Pakozdi T., Ciglar L., Noordermeer D., Huber W. and Furlong E. E. M. 2014 Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Graves J. L., Hertweck K. L., Phillips M. A., Han M. V., Cabral L. G., Barter T. T. et al. 2017 Genomics of parallel experimental evolution in Drosophila. Mol. Biol. Evol. 34, 831–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hämälä T., Gorton A. J., Moeller D. A. and Tiffin P. 2020 Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia). PLOS Genet, https://doi.org/10.1371/journal.pgen.1008707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill M. S., Vande Zande P. and Wittkopp P. J. 2021 Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22, 203–215.

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra H. E. and Coyne J. 2007 The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016.

    Article  PubMed  Google Scholar 

  • Hsu S.-K., Belmouaden C., Nolte V. and Schlotterer C. 2020 Parallel gene expression evolution in natural and laboratory evolved populations. Mol. Ecol. 30, 884–894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly J. K. and Hughes K. A. 2018 Pervasive linked selection and intermediate-frequency alleles are implicated in an evolve-and-resequencing experiment of Drosophila simulans. Genetics 211, 943–961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kern A. D. and Haussler D. 2010 A population genetic hidden Markov model for detecting genomic regions under selection. Mol. Biol. Evol. 27, 1673–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kezos J. N., Phillips M. A., Thomas M. D., Ewunkem A. J., Rutledge G. A., Barter T. T. et al. 2019 Genomic and phenotypic effects of selection for starvation resistance in Drosophila. Physiol. Biochem. Zool. 92, 591–611.

    Article  PubMed  Google Scholar 

  • Krizhevsky A., Sutskever I. and Hinton G. E. 2012 ImageNet classification with deep convolutional neural networks. Adv. Neural Information Proc. Syst. 25, 1097–1105.

    Google Scholar 

  • Li H., Handsaker B., Wysoker A., Fennel T., Ruan J., Homer N. et al. 2009 Genome project data processing S. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Love M. I., Huber W. and Anders S. 2014 Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallard F., Nolte V., Tobler R., Kapun M. and Schlotterer C. 2018 A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119.

    Article  PubMed  PubMed Central  Google Scholar 

  • McClintock B. 1950 The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36, 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller L. D., Phillips M. A., Barter T. T., Greenspan Z. S. and Rose M. R. 2018 Genome-wide mapping of gene-phenotype relationships in experimentally evolved populations. Mol. Biol. Evol. 35, 2085–2095.

    Article  CAS  PubMed  Google Scholar 

  • Orr H. A. 2000 Adaptation and the cost of complexity. Evolution 54, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Otto S. P. 2004 Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proceedings: Biol. Sci. 271, 705–714.

    Google Scholar 

  • Petersen A., Witten D. and Simon N. 2016 Fused lasso additive model. J. Comput. Graph. Stat. 25, 1005–1025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips M. A., Rutledge G. A., Kezos J. N., Greenspan Z. S., Talbott A., Matty S. et al. 2018 Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genomics 19, 743–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team 2018 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (available at https://www.R-project.org/).

  • Remolina S. C., Chang P. L., Leips J., Nuzhdin S. V. and Hughes K. A. 2012 Genomic basis of aging and life-history evolution in Drosophila melanogaster. Evolution 66, 3390–3403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennison D. J. and Peichel C. L. 2021 Pleiotropy facilitates parallel adaptation in sticklebacks. Mol. Ecol. 31, 1476–1486.

    Article  Google Scholar 

  • Rose M. R., Passananti H. B. and Matos M. (eds.) 2004 Methuselah flies: a case study in the evolution of aging, World Scientific, Singapore.

    Google Scholar 

  • Schlotterer C., Kofler R., Versace E., Tobler R. and Franssen S. U. 2015 Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114, 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Schrider D. R. and Kern A. D. 2016 S/HIC: robust identification of soft and hard sweeps using machine learning. PLoS Genet, https://doi.org/10.1371/journal.pgen.1005928.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrider D. R. and Kern A. D. 2018 Supervised machine learning for population genetics: A new paradigm. Trends Genet. 34, 301–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastiani F. 2002 Machine learning in automated texted categorization. ACM Comput. Surveys 34, 1–47.

    Article  Google Scholar 

  • Shapiro M. D., Marks M. E., Peichel C. L., Blackman B. K., Nereng K. S., Jonsson B. et al. 2004 Genetic and developmental basis of evolutionary pelvic reduction in three spine sticklebacks. Nature 428, 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Sheehan S. and Song Y. S. 2016 Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith J. M., Bozcuk A. N. and Tebbutt S. 1970 Protein turnover in adult Drosophila. J. Insect Physiol. 16, 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Stapley J., Santure A. W. and Dennis S. R. 2015 Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24, 2241–2252.

    Article  CAS  PubMed  Google Scholar 

  • Taus T., Futschik A. and Schlotterer C. 2017 Quantifying selection with pool-seq time series data. Mol. Biol. Evol. 34, 3023–3034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topa H., Jonas A., Kofler R., Kosiol C. and Honkela A. 2015 Gaussian process test for high-throughput sequencing time series: application to experimental evolution. Bioinformatics 31, 1672–1670.

    Article  Google Scholar 

  • Turner T. L., Stewart A. D., Fields A. T., Rice W. R. and Tarone A. M. 2011 Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. 7, e1001336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van’t Hof A. E., Campagne P., Rigden D. J., Yung C. J., Lingley J. and Quail M. A. 2016 The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105.

    Article  Google Scholar 

  • Veiner M., Morimoto J., Leadbeater E. and Manfredini F. 2022 Machine learning models identify gene predictors of waggle dance behavior in honeybees. Mol. Ecol. Res., https://doi.org/10.1111/1755-0998.13611.

    Article  Google Scholar 

  • Vlachos C., Burny C., Pelizzola M., Borges R., Futschik A., Kofler R. and Schlotterer C. 2019 Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies. Genome Biol. 20, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner G. P., Kenney-Hunt J. P., Pavlicev M., Peck J. R., Waxman D. and Cheverud J. M. 2008 Pleiotropic scaling of gene effects and the ‘cost of complexity.’ Nature 452, 470–472.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z., Liao B.-Y. and Zhang J. 2010 Genomic patterns of pleiotropy and the evolution of complexity. Proc. Natl. Acad. Sci. USA 107, 18034–18039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray G. A., Hahn M. W., Abouheif E., Balhoff J. P., Pizer M., Rockman M. V. and Romano L. A. 2003 The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419.

    Article  CAS  PubMed  Google Scholar 

  • Wright S. 1980 Genic and organismic selection. Evolution 34, 825–843.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MAP was supported by an NSF Postdoctoral Fellowship (NSF 190624).

Author information

Authors and Affiliations

Authors

Contributions

TTB collected and analysed the genomic data, MRR, TTB and JMR conceived the research, MAP and ZSG helped with the genomic analysis, TTB wrote the first draft and MRR, JMR, MAP, ZSG and LDM edited the manuscript, LDM and ZSG did the FLAM analysis. ZSG and TTB contributed equally to the project.

Corresponding author

Correspondence to Laurence D. Mueller.

Additional information

Corresponding editor: Divya Tej Sowpati

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10405 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenspan, Z.S., Barter, T.T., Phillips, M.A. et al. Genomewide architecture of adaptation in experimentally evolved Drosophila characterized by widespread pleiotropy. J Genet 103, 8 (2024). https://doi.org/10.1007/s12041-023-01460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01460-8

Keywords

Navigation