Skip to main content
Log in

Effects of Expanded Graphite Compound of Different Sizes on Thermal Properties of NaNO3–NaCl/Expanded Graphite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The rational use of energy is of great significance for the long-term stable development of the economy. However, energy such as solar energy and industrial waste heat are difficult to be utilized stably. The development of thermal storage technology can alleviate the instability of energy. In this paper, 96 wt% NaNO3-4 wt% NaCl (NN) was used as the thermal storage material and expanded graphite (EG) was used to adsorb NN binary phase change material (PCM). The effect of EG with different particle sizes on the thermal performance of NaNO3–NaCl/EG composite phase change material (CPCM) was studied. The results showed that the addition of EG reduced the supercooling degree of NN from 4.7 °C to 1.1 °C. The addition of EG powder increased the contact probability between fillers and provided more adsorption positions for PCM, increasing the latent heat of composites. The addition of 32 mesh EG–EG powder greatly increased the thermal conductivity of NN from 1.24 W·m−1·K−1 to 5.43 W·m−1·K−1. It is because the pores of large particle size EG are filled with EG powder, which is easy to form chain or network structure, forming more heat conduction pathways. The research provides some technical support for the application of phase change heat storage technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.Y. Yan, S.K. Chou, U. Desideri, Appl. Energy 162, 48 (2016)

    Article  Google Scholar 

  2. H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Int. J. Thermofluids. 5, 100039 (2020). https://doi.org/10.1016/j.ijft.2020.100039

    Article  Google Scholar 

  3. Z. Huang, X. Gao, T. Xu, Appl. Energy 115, 265–271 (2014). https://doi.org/10.1016/j.apenergy.2013.11.019

    Article  ADS  Google Scholar 

  4. M. Lachheb, A. Adili, F. Albouchi, Appl. Therm. Eng. 102, 922–931 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.167

    Article  Google Scholar 

  5. Y. Li, W.C. Tie, Q.Z. Zhu, Int. J. Thermophys. 42, 155 (2021)

    Article  ADS  Google Scholar 

  6. Y. Li, G. Yue, Y.M. Yu, Energy 196, 117067 (2020). https://doi.org/10.1016/j.energy.2020.117067

    Article  Google Scholar 

  7. W. Qiu, D. Wang, S. Wang, Sol. Energy Mater. Sol. Cells 230, 111186 (2021). https://doi.org/10.1016/j.solmat.2021.111186

    Article  Google Scholar 

  8. Q. Yu, Y. Lu, C. Zhang, Sol. Energy Mater. Sol. Cells 215, 110590 (2020). https://doi.org/10.1016/j.solmat.2020.110590

    Article  Google Scholar 

  9. X. Chen, P. Cheng, Z. Tang, Adv. Sci. 8, 2001274 (2021). https://doi.org/10.1002/advs.202001274

    Article  Google Scholar 

  10. X. Ran, H. Wang, Y. Zhong, Sol. Energy Mater. Sol. Cells 225, 111047 (2021). https://doi.org/10.1016/j.solmat.2021.111047

    Article  Google Scholar 

  11. L. Sang, Y. Xu, J. Energy Storage 31, 101611 (2020). https://doi.org/10.1016/j.est.2020.101611

    Article  Google Scholar 

  12. T. Wang, K. Wang, F. Ye, J. Energy Storage 33, 102123 (2021). https://doi.org/10.1016/j.est.2020.102123

    Article  Google Scholar 

  13. S. Wu, T. Yan, Z. Kuai, Sol. Energy 205, 474–486 (2020). https://doi.org/10.1016/j.solener.2020.05.052

    Article  ADS  Google Scholar 

  14. X.K. Yu, Y.B.J. Tao, Energy Storage 63, 107019 (2023). https://doi.org/10.1016/j.est.2023.107019

    Article  Google Scholar 

  15. Y. Li, S.L. Jiang, C.G. Wang, Energy 239, 122062 (2022). https://doi.org/10.1016/j.energy.2021.122062

    Article  Google Scholar 

  16. Y. Zhao, L. Jin, B. Zou, Appl. Therm. Eng. 171, 115015 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115015

    Article  Google Scholar 

  17. H. Zhou, L. Lv, Y. Zhang, Sol. Energy Mater. Sol. Cells 230, 111244 (2021). https://doi.org/10.1016/j.solmat.2021.111244

    Article  Google Scholar 

  18. Z. Jin, X. Chen, Y. Wang, Comput. Mater. Sci. 102, 45–50 (2015). https://doi.org/10.1016/j.commatsci.2015.02.019

    Article  Google Scholar 

  19. T. Yunfeng, L.I. Zhen, W. Yang, J. Chinese, Mater. Res. 29, 262–268 (2015)

    Google Scholar 

  20. Y. Li, W.W. Tan, C.G. Wang, J. Therm. Anal. Calorim. 148, 733–739 (2023)

    Article  Google Scholar 

  21. J. Xu, Y. Ma, W. Hu, Nat. Mater. 8, 348–353 (2009)

    Article  ADS  Google Scholar 

  22. Y.F. Li, D.J. Zhang, Funct. Mater. 10, 1451–1456 (2013)

    Google Scholar 

  23. Y. Zhang, W. Li, J. Huang, Materials 13, 894 (2020). https://doi.org/10.3390/ma13040894

    Article  ADS  Google Scholar 

  24. H. Chen, V.V. Ginzburg, J. Yang, Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  Google Scholar 

  25. J. Zhao, Y. Guo, F. Feng, RENENE 36, 1339–1342 (2011). https://doi.org/10.1016/j.renene.2010.11.028

    Article  Google Scholar 

  26. A. Karaipekli, A. Sarı, K. Kaygusuz, RENENE 32, 2201–2210 (2007). https://doi.org/10.1016/j.renene.2006.11.011

    Article  Google Scholar 

  27. Y. Li, S.H. Zhou, S.L. Jiang, Sol. Energy 263, 111926 (2023). https://doi.org/10.1016/j.solener.2023.111926

    Article  ADS  Google Scholar 

  28. B. Lu, Y. Zhang, D. Sun, B. Lu, Y. Zhang, D. Sun, Renew Emergy 178, 669–678 (2021). https://doi.org/10.1016/j.renene.2021.06.070

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the Science and Technology Commission of Shanghai Municipality under the contract No. 20dz1205208, which is gratefully acknowledged by the authors.

Funding

This research is supported by the Science and Technology Commission of Shanghai Municipality under the contract No. 20dz1205208, which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Contributions

YL participated in the analysis of the test results and the revision of the manuscript. KM and SJ participated in the test of samples and the preparation of manuscripts. QZ contributed to the analysis through constructive discussions.

Corresponding authors

Correspondence to Yan Li or Qunzhi Zhu.

Ethics declarations

Conflict of interest

We declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ma, K., Jiang, S. et al. Effects of Expanded Graphite Compound of Different Sizes on Thermal Properties of NaNO3–NaCl/Expanded Graphite. Int J Thermophys 45, 15 (2024). https://doi.org/10.1007/s10765-023-03306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03306-y

Keywords

Navigation