Skip to main content
Log in

The role of randomly packed particles on macroscopic elastic bonded grain properties

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Bonded discrete element method (DEM) models utilize networks of bonds between discrete particles to simulate continuum behaviors of real materials, most notably large deformations and failure which are difficult to simulate with mesh-based methods. However, the process of calibrating the bond parameters to produce specific macroscale properties remains an active area of research. Current calibration methods typically demonstrate the applicability of calibrations on the geometry they were created from. Our research utilizes an energy-based method to produce calibrations for monodisperse randomly packed bonded particles without running simulations. These calibrations are then utilized to simulate networks of bonded particles that vary from the calibration set in one of three ways: (1) number of particles; (2) aspect ratio; and (3) cross section shape. This work quantifies the standard deviation in the mean Young’s modulus and Poisson’s ratio produced by a general DEM calibration for randomly packed bonded particle specimens if the coordination number, particle diameter, shape, or aspect ratio is varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. André D, Iordanoff I, Charles Jl, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213:113–125. https://doi.org/10.1016/j.cma.2011.12.002

    Article  Google Scholar 

  2. Berger KJ, Hrenya CM (2014) Challenges of DEM: II. Wide particle size distributions. Powder Technol 264:627–633. https://doi.org/10.1016/j.powtec.2014.04.096

    Article  Google Scholar 

  3. Chang CS, Liao CL (1990) Constitutive relation for a particulate medium with the effect of particle rotation. Int J Solids Struct 26(4):437–453. https://doi.org/10.1016/0020-7683(90)90067-6

    Article  Google Scholar 

  4. Clemmer JT, Long KN, Brown JA (2023) Exploring pressure-dependent inelastic deformation and failure in bonded granular composites: an energetic materials perspective. Mech Mater. https://doi.org/10.1016/j.mechmat.2023.104693

    Article  Google Scholar 

  5. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  6. Estay D, Chacana F, Ibarra J, Pérez L, Lascano S (2017) Bond calibration method for young’s modulus determination in the discrete element method framework. Granul Matter 19:1–7. https://doi.org/10.1007/s10035-017-0734-5

    Article  Google Scholar 

  7. Girardot J, Pruliere E (2021) Elastic calibration of a discrete domain using a proper generalized decomposition. Comput Part Mech 8:993–1000. https://doi.org/10.1007/s40571-020-00385-8

    Article  Google Scholar 

  8. Griffiths D, Mustoe GG (2001) Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int J Numer Meth Eng 50(7):1759–1775. https://doi.org/10.1002/nme.99

    Article  Google Scholar 

  9. Guo J, Xu G, Jing H, Kuang T (2013) Fast determination of meso-level mechanical parameters of PFC models. Int J Min Sci Technol 23(1):157–162. https://doi.org/10.1016/j.ijmst.2013.03.007

    Article  Google Scholar 

  10. Hanley KJ, O’sullivan C, Oliveira JC, Cronin K, Byrne EP (2011) Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol 210(3):230–240. https://doi.org/10.1016/j.powtec.2011.03.023

    Article  Google Scholar 

  11. Hentz S, Daudeville L, Donzé FV (2004) Identification and validation of a discrete element model for concrete. J Eng Mech 130(6):709–719. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)

    Article  Google Scholar 

  12. Ibarra J, Estay D, Pacheco A, Guzmán L, Barraza R, Chacana F, Hernández C (2022) Bond calibration method for macroparameters using the discrete element method framework. Eng Fract Mech 262:108223. https://doi.org/10.1016/j.engfracmech.2021.108223

    Article  Google Scholar 

  13. Jarolin K, Dosta M (2021) Linearization-based methods for the calibration of bonded-particle models. Comput Part Mech 8(3):511–523. https://doi.org/10.1007/s40571-020-00348-z

    Article  Google Scholar 

  14. Ku Q, Zhao J, Mollon G, Zhao S (2023) Compaction of highly deformable cohesive granular powders. Powder Technol. https://doi.org/10.1016/j.powtec.2023.118455

    Article  Google Scholar 

  15. Leclerc W (2017) Discrete element method to simulate the elastic behavior of 3D heterogeneous continuous media. Int J Solids Struct 121:86–102. https://doi.org/10.1016/j.ijsolstr.2017.05.018

    Article  Google Scholar 

  16. Leclerc W (2019) Effect of packing characteristics on the simulation of elasticity and brittle fracture by the cohesive discrete element method. Granul Matter 21(2):17. https://doi.org/10.1007/s10035-019-0877-7

    Article  Google Scholar 

  17. Liao CL, Chang TP, Young DH, Chang CS (1997) Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct 34(31–32):4087–4100. https://doi.org/10.1016/S0020-7683(97)00015-2

    Article  Google Scholar 

  18. Lochmann K, Oger L, Stoyan D (2006) Statistical analysis of random sphere packings with variable radius distribution. Solid State Sci 8(12):1397–1413. https://doi.org/10.1016/j.solidstatesciences.2006.07.011

    Article  Google Scholar 

  19. Lubachevsky BD, Stillinger FH (1990) Geometric properties of random disk packings. J Stat Phys 60:561–583. https://doi.org/10.1007/BF01025983

    Article  MathSciNet  Google Scholar 

  20. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka v, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) Sympy: symbolic computing in python. PeerJ Comput Sci 3:e103. https://doi.org/10.7717/peerj-cs.103

    Article  Google Scholar 

  21. Nguyen TT, André D, Huger M (2019) Analytic laws for direct calibration of discrete element modeling of brittle elastic media using cohesive beam model. Comput Part Mech 6(3):393–409. https://doi.org/10.1007/s40571-018-00221-0

    Article  Google Scholar 

  22. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  Google Scholar 

  23. Potyondy D (2012) A flat-jointed bonded-particle material for hard rock. In: 46th US rock mechanics/geomechanics symposium. OnePetro

  24. Potyondy DO, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  25. Qu T, Feng Y, Wang M, Jiang S (2020) Calibration of parallel bond parameters in bonded particle models via physics-informed adaptive moment optimisation. Powder Technol 366:527–536. https://doi.org/10.1016/j.powtec.2020.02.077

    Article  Google Scholar 

  26. Qu T, Feng Y, Zhao J (2022) A strain energy-based elastic parameter calibration method for lattice/bonded particle modelling of solid materials. Powder Technol 410:117860. https://doi.org/10.1016/j.powtec.2022.117860

    Article  Google Scholar 

  27. Redaelli I, di Prisco C (2019) Three dimensional steady-state locus for dry monodisperse granular materials: dem numerical results and theoretical modelling. Int J Numer Anal Methods Geomech 43(16):2525–2550. https://doi.org/10.1002/nag.2985

    Article  Google Scholar 

  28. Schramm M, Tekeste MZ (2022) Wheat straw direct shear simulation using discrete element method of fibrous bonded model. Biosyst Eng 213:1–12. https://doi.org/10.1016/j.biosystemseng.2021.10.010

    Article  Google Scholar 

  29. Scott G, Kilgour D (1969) The density of random close packing of spheres. J Phys D Appl Phys 2(6):863. https://doi.org/10.1088/0022-3727/2/6/311

    Article  Google Scholar 

  30. Silbert LE (2010) Jamming of frictional spheres and random loose packing. Soft Matter 6(13):2918–2924

    Article  Google Scholar 

  31. Spettl A, Bachstein S, Dosta M, Goslinska M, Heinrich S, Schmidt V (2016) Bonded-particle extraction and stochastic modeling of internal agglomerate structures. Adv Powder Technol 27(4):1761–1774. https://doi.org/10.1016/j.apt.2016.06.007

    Article  Google Scholar 

  32. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD et al (2022) Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  33. Utili S, Nova R (2008) Dem analysis of bonded granular geomaterials. Int J Numer Anal Methods Geomech 32(17):1997–2031. https://doi.org/10.1002/nag.728

    Article  Google Scholar 

  34. Vassaux M, Oliver-Leblond C, Richard B, Ragueneau F (2016) Beam-particle approach to model cracking and energy dissipation in concrete: identification strategy and validation. Cement Concr Compos 70:1–14. https://doi.org/10.1016/j.cemconcomp.2016.03.011

    Article  Google Scholar 

  35. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J et al (2020) Scipy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-020-0772-5

    Article  Google Scholar 

  36. Wang Y (2009) A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations. Acta Geotech 4(2):117–127. https://doi.org/10.1007/s11440-008-0072-1

    Article  Google Scholar 

  37. Wang Y, Abe S, Latham S, Mora P (2006) Implementation of particle-scale rotation in the 3-D lattice solid model. In: Yin XC, Mora P, Donnellan A, Matsu’ura M (eds) Computational earthquake physics: simulations, analysis and infrastructure part I. Birkhäuser Basel, Basel, pp 1769–1785

    Google Scholar 

  38. Wang Y, Mora P (2008) Macroscopic elastic properties of regular lattices. J Mech Phys Solids 56(12):3459–3474. https://doi.org/10.1016/j.jmps.2008.08.011

  39. Wang Y, Mora P (2009) The ESyS_particle: a new 3-D discrete element model with single particle rotation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 183–228. https://doi.org/10.1007/978-3-540-85879-9_6

    Book  Google Scholar 

  40. Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Methods Geomech 34(5):447–469. https://doi.org/10.1002/nag.811

    Article  Google Scholar 

  41. Wittel FK, Carmona HA, Kun F, Herrmann HJ (2008) Mechanisms in impact fragmentation. Int J Fract 154:105–117. https://doi.org/10.1007/s10704-008-9267-6

    Article  Google Scholar 

  42. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44(6):871–889. https://doi.org/10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  43. Zhou Z, Bai S, Chu K, Li J, Sun J, Wang M, Sun Y, Li M, Liu Y (2022) Calibration of DEM macro and micro parameters via XGBoost method. Granul Matter 24(4):106. https://doi.org/10.1007/s10035-022-01264-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge helpful discussions and careful review from Joel Clemmer and Dan Bolintineanu of Sandia National Laboratories. Portions of this research were conducted with high performance research computing resources provided by Texas A &M University (https://hprc.tamu.edu). This work was partially supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17.

Table 3 \({E_M}\) and \({\nu _M}\) of circular cross section with FCC particle arrangement, 0.25 scaled length units particle diameter, 6.13 scaled length units high, 4.23 scaled length units diameter, and coordination number of 12.0
Table 4 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross section with 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 6.2
Table 5 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 9.0
Table 6 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 12.0
Table 7 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.20 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 6.2
Table 8 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.15 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 6.2
Table 9 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of square cross sections with 0.25 scaled length units particle diameter, 6.25 scaled length units high, 3.75 scaled length units width, and coordination number of 6.2
Table 10 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.25 scaled length units particle diameter, 9.38 scaled length units high, 3.45 scaled length units diameter, and coordination number of 6.2
Table 11 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.25 scaled length units particle diameter, 12.5 scaled length units high, 2.99 scaled length units diameter, and coordination number of 6.2
Table 12 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.20 scaled length units particle diameter, 9.38 scaled length units high, 3.45 scaled length units diameter, and coordination number of 6.2
Table 13 \(\overline{E_M}\), \(\overline{\nu _M}\), \(E_\varSigma \), and \(\nu _\varSigma \) of circular cross sections with 0.20 scaled length units particle diameter, 12.5 scaled length units high, 2.99 scaled length units diameter, and coordination number of 6.2
Table 14 \({E_M}\) and \({\nu _M}\) as \(\nu _\mu \) approaches 1/3 of circular cross section with FCC particle arrangement, 0.25 scaled length units particle diameter, 6.13 scaled length units high, 4.23 scaled length units diameter, and coordination number of 12.0
Table 15 \(\overline{E_M}\) and \(\overline{\nu _M}\) as \(\nu _\mu \) approaches 0.25 of circular cross section with randomly packed particles, 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 6.2
Table 16 \(\overline{E_M}\) and \(\overline{\nu _M}\) as \(\nu _\mu \) approaches 0.25 of circular cross section with randomly packed particles, 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 9.0
Table 17 \(\overline{E_M}\) and \(\overline{\nu _M}\) as \(\nu _\mu \) approaches 0.25 of circular cross section with randomly packed particles, 0.25 scaled length units particle diameter, 6.25 scaled length units high, 4.23 scaled length units diameter, and coordination number of 12.0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, S., Cooper, M.A. The role of randomly packed particles on macroscopic elastic bonded grain properties. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-023-00704-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00704-9

Keywords

Navigation