Skip to main content
Log in

Multiscale simulation of electrostatic powder coating sprays

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Powder coating is a finishing process used in various industries where electrostatically charged particles are sprayed onto metal surfaces. High-fidelity simulation is becoming increasingly popular to optimize this technique. However, the current standard approaches based on modeling the individual particles require substantial computational effort, which limits their practical application. To alleviate this drawback, the multiscale pseudo-direct numerical simulation method (P-DNS) is extended for the study of the turbulent flow of charged particles. In an offline process, representative volume elements (RVEs) are simulated considering the particles and their interactions with the surrounding gas and electrostatic field, and the dynamic response of the mixture is homogenized. On the global scale, where a continuous field for the particulate phase is used, the effects of turbulence and coupling forces are obtained by evaluating synthetic models of the RVEs with local dimensionless parameters. Additionally, a coat film model is presented to quantify the coating layer thickness on the target surface. The numerical tool is first validated with experimental data from the literature. Then, it is applied to the coating of a surface of complex geometry, analyzing the impact of particle diameter, applied voltage, and spray gun trajectory. The reliable results obtained with modest resources confirm the potential of the methodology as a rapid predictive tool in processes involving this coating technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\textrm{H}\) :

Length [m]

\(\textrm{r}\) :

Particle to fluid density ratio [−]

\(\epsilon \) :

Volume fraction of the carrier phase [−]

\(\epsilon _{\textrm{p}}\) :

Volume fraction of the particulate phase [−]

\(\textbf{u}\) :

Velocity of the carrier phase [m/s]

\({\textbf{u}}_{\textrm{p}}\) :

Velocity of the particulate phase [m/s]

\(\textbf{u}_{\textrm{r}}\) :

Relative velocity between phases [m/s]

\(\textbf{u}^{\textrm{M}}\) :

Velocity of the moving frame [m/s]

\(\textbf{v}_\textrm{p}\) :

Velocity of a particle [m/s]

\(\mathrm p\) :

Pressure [kg/(m s\(^2\))] = [Pa]

\(\rho \) :

Density of the carrier phase [kg/m\(^3\)]

\(\rho _{\textrm{p}}\) :

Density of the particulate phase [kg/m\(^3\)]

\(\mu \) :

Dynamic viscosity of the carrier phase [kg/(m s\(^2\))]

\(\mathrm g\) :

Gravitational acceleration magnitude [m/s\(^2\)]

\({\textbf {T}}^\mu \) :

Viscous stress tensor [m\(^2\)/s\(^2\)]

\({\textbf {T}}^\rho \) :

Fine inertial stress tensor from the fine scale [m\(^2\)/s\(^2\)]

\({\textbf {s}}\) :

Fine-scale dispersion field [m/s]

\(\textbf{f}\) :

Momentum transfer between phases by mass unit [m/s\(^2\)]

\(\textrm{V}_{\textrm{p}}\) :

Volume of a particle [m\(^3\)]

\({{\varvec{f}}}_{\textrm{d}}\) :

Drag force acting over a particle [kg m/s\(^2\)] = [N]

\({{\varvec{f}}}_{\textrm{b}}\) :

Mass-dependent forces acting over a particle [kg m/s\(^2\)] = [N]

\({{\varvec{f}}}_{\textrm{g}}\) :

Gravitational force acting over a particle [kg m/s\(^2\)] = [N]

\({{\varvec{f}}}_{\textrm{e}}\) :

Electric force acting over a particle [kg m/s\(^2\)] = [N]

\({\textbf {G}}\) :

Coarse velocity symmetric gradient [m\(^2\)/s\(^2\)]

\({\textbf {b}}\) :

Body acceleration [m/s\(^2\)]

\(\varphi \) :

Electrostatic potential [kg m\(^2\)/(s\(^3\) A)] = [kV]

\(\textbf{e}\) :

Electric field [kg m/(s\(^3\) A)] = [kV/m]

\(\textrm{q}_{\textrm{p}}\) :

Specific charge of a particle [A s/kg]

\(\rho _{\textrm{e}}\) :

Density of charge [A s/m\(^3\)]

\(\epsilon _0\) :

Permittivity of void [A\(^2\) s\(^4\)/(kg  m\(^3\))]

\(\textrm{Id}_1\) :

Dimensionless instability index 1 [−]

\(\textrm{Id}_2\) :

Dimensionless instability index 2 [−]

\(\textrm{b}\) :

Body acceleration magnitude [m/s\(^2\)]

\(\theta \) :

Polar angle of the body acceleration [−]

\(\psi \) :

Azimuth angle of the body acceleration [−]

\(\textrm{d}_{\textrm{p}}\) :

Mean of particle diameters [−]

\(\eta \) :

Dispersion of particle diameters [−]

\(\textrm{r}\) :

Particle to fluid density ratio [−]

\({\textrm{k}}\) :

Turbulent kinetic energy [m\(^2\)/s\(^2\)]

\(\textbf{K}\) :

Turbulent diffusivity of mass [m\(^2\)/s]

\(\textbf{D}\) :

Turbulent diffusivity of momentum [m\(^2\)/s]

\(\delta _{\textrm{p}}\) :

Coating thickness [m]

\(\delta \) :

First-cell height [m]

\(\textbf{n}\) :

Surface normal [−]

Normal:

Scalar

Bold-lowercase:

Vector

Bold-uppercase:

Tensor

\({(.)}^{\textrm{c}}\) :

Coarse-scale field

\({(.)}^{\textrm{f}}\) :

Fine-scale field

\(\mathrm {(.)}^{\textrm{R}}\) :

RVE field

\(\widetilde{(.)}\) :

Dimensionless field

References

  1. Pendar MR, Rodrigues F, Páscoa JC, Lima R (2022) Review of coating and curing processes: evaluation in automotive industry. Phys Fluids 34(10)

  2. Janardhanan S, Zvonkina I, Soucek MD (2000) Powder coating technology. Kirk-Othmer encyclopedia of chemical technology, pp 1–16

  3. Du Z, Wen S, Wang J, Yin C, Yu D, Luo J (2016) The review of powder coatings. J Mater Sci Chem Eng 4(3):54

    Google Scholar 

  4. Barringer SA, Sumonsiri N (2015) Electrostatic coating technologies for food processing. Annu Rev Food Sci Technol 6(1):157. https://doi.org/10.1146/annurev-food-022814-015526. (PMID: 25648420)

    Article  Google Scholar 

  5. Yang Q, Ma Y, Zhu J, Chow K, Shi K (2017) An update on electrostatic powder coating for pharmaceuticals. Particuology 31:1

    Article  Google Scholar 

  6. Yang Q, Yuan F, Ma Y, Shi K, Yang G, Zhu J (2020) Electrostatic powder coated osmotic pump tablets: influence factors of coating powder adhesion and film formation. Powder Technol 360:444

    Article  Google Scholar 

  7. Ayrilmis N (2022) A review on electrostatic powder coatings for the furniture industry. Int J Adhes Adhes 113:103062

    Article  Google Scholar 

  8. Kafui K, Thornton C, Adams M (2002) Discrete particle-continuum fluid modelling of gas-solid fluidised beds. Chem Eng Sci 57(13):2395. https://doi.org/10.1016/S0009-2509(02)00140-9

    Article  Google Scholar 

  9. Balachandar S, Eaton J (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42(1):111. https://doi.org/10.1146/annurev.fluid.010908.165243

    Article  Google Scholar 

  10. Ye Q, Steigleder T, Scheibe A, Domnick J (2002) Numerical simulation of the electrostatic powder coating process with a corona spray gun. J Electrostat 54(2):189

    Article  Google Scholar 

  11. Shah U, Zhang C, Zhu J, Wang F, Martinuzzi R (2007) Validation of a numerical model for the simulation of an electrostatic powder coating process. Int J Multiph Flow 33(5):557

    Article  Google Scholar 

  12. Toljic N, Adamiak K, Castle G, Kuo HHH, Fan HTC (2011) Three-dimensional numerical studies on the effect of the particle charge to mass ratio distribution in the electrostatic coating process. J Electrostat 69(3):189

    Article  Google Scholar 

  13. Li Z, Zhang C, Zhu J (2006) Numerical study of air-particle two-phase flows inside a powder coating booth. Int J Comput Methods Eng Sci Mech 7(3):141

    Article  Google Scholar 

  14. Toljic N, Adamiak K, Castle G, Kuo HHH, Fan HTC (2013) A full 3d numerical model of the industrial electrostatic coating process for moving targets. J Electrostat 71(3):299

    Article  Google Scholar 

  15. Soma T, Amemiya S, Katayama T, Saito Y, Matsushita Y, Aoki H, Inamura T, Daikoku M, Fukuno J (2017) Numerical simulations of particle-laden turbulent flows to characterize the two different types of paint spray; bell-cup atomizer and powder spray gun. J Chem Eng Jpn 50(4):254

    Article  Google Scholar 

  16. Yang Q, Chen J, Zhou X, Zhou H, Yang G, Zhu J (2022) Modeling of inter-tablet coating uniformity of electrostatic dry powder coating by discrete element method. Powder Technol 411:117929

    Article  Google Scholar 

  17. Ludwig W, Ligus G, Korman P, Skedlak A, Zajkac D (2022) CFD modelling of a powder spraying nozzle used for dry coating. Chem Eng Res Des 178:550

    Article  Google Scholar 

  18. Boiger G, Boldrini M, Lienhard V, Siyahhan B, Khawaja H, Moatamedi M (2020) Multiphysics Eulerian-Lagrangian electrostatic particle spray-and deposition model for openfoam® and kaleidosim® cloud-platform. Int J Multiphys 14(1):1

    Google Scholar 

  19. Pendar MR, Páscoa JC (2019) Numerical modeling of electrostatic spray painting transfer processes in rotary bell cup for automotive painting. Int J Heat Fluid Flow 80:108499

    Article  Google Scholar 

  20. Pendar MR, Páscoa JC (2020) Atomization and spray characteristics around an erbs using various operational models and conditions: Numerical investigation. Int J Heat Mass Transf 161:120243

    Article  Google Scholar 

  21. Pendar MR, Páscoa JC (2021) Numerical analysis of charged droplets size distribution in the electrostatic coating process: effect of different operational conditions. Phys Fluids 33(3)

  22. Pendar MR, Cândido S, Páscoa JC (2023) Optimization of painting efficiency applying unique techniques of high-voltage conductors and nitrotherm spray: developing deep learning models using computational fluid dynamics dataset. Phys Fluids 35(7)

  23. Drew DA (1983) Mathematical modeling of two-phase flow. Annu Rev Fluid Mech 15(1):261

    Article  MathSciNet  Google Scholar 

  24. Ma J, Oberai AA, Hyman MC, Drew DA, Lahey RT Jr (2011) Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model. Comput Fluids 52:50

    Article  MathSciNet  Google Scholar 

  25. Ma J, Oberai AA, Lahey RT, Drew DA (2011) Modeling air entrainment and transport in a hydraulic jump using two-fluid rans and des turbulence models. Heat Mass Transf 47(8):911

    Article  Google Scholar 

  26. Dastourani H, Jahannama M, Eslami-Majd A (2018) A physical insight into electrospray process in cone-jet mode: Role of operating parameters. Int J Heat Fluid Flow 70:315

    Article  Google Scholar 

  27. Zeybek M, Grosshans H (2021) Eulerian formulation for the triboelectric charging of polydisperse powder flows. Phys Fluids 33(6):063304

    Article  Google Scholar 

  28. Idelsohn SR, Nigro N, Larreteguy A, Gimenez JM, Ryzhakov P (2020) A pseudo-DNS method for the simulation of incompressible fluid flows with instabilities at different scales. Comput Particle Mech 7(1):19. https://doi.org/10.1007/s40571-019-00264-x

    Article  Google Scholar 

  29. Gimenez JM, Idelsohn SR, Oñate E, Löhner R (2021) A multiscale approach for the numerical simulation of turbulent flows with droplets. Arch Comput Methods Eng 28(6):4185

    Article  MathSciNet  Google Scholar 

  30. Idelsohn SR, Gimenez JM, Löhner R, Oñate E (2022) A multiscale approach for the study of particle-laden flows using a continuous model. Comput Methods Appl Mech Eng 401:115174

    Article  MathSciNet  Google Scholar 

  31. Idelsohn SR, Gimenez JM, Nigro N, Oñate E (2021) The pseudo-direct numerical simulation method for multi-scale problems in mechanics. Comput Methods Appl Mech Eng 380:113774. https://doi.org/10.1016/j.cma.2021.113774

    Article  MathSciNet  Google Scholar 

  32. Idelsohn SR, Gimenez JM, Nigro NM (2022) The pseudo-direct numerical simulation method considered as a reduced order model. Adv Model Simul Eng Sci 9(1):1

  33. Larreteguy AE, Gimenez JM, Nigro NM, Sívori FM, Idelsohn SR (2023) A data-driven memory model for solving turbulent flows with the pseudo-direct numerical simulation method. Int J Numer Meth Fluids 95(1):44

    Article  MathSciNet  Google Scholar 

  34. Armenio V, Fiorotto V (2001) The importance of the forces acting on particles in turbulent flows. Phys Fluids 13(8):2437. https://doi.org/10.1063/1.1385390

    Article  Google Scholar 

  35. Zannetti P (1990) Air pollution modeling: theories, computational methods and available software. Computational Mechanics Publication (Springer US). https://books.google.es/books?id=FyxSAAAAMAAJ

  36. Schmitt FG (2007) About boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9–10):617

  37. Gimenez JM, Aguerre H, Idelsohn SR, Nigro N (2019) A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. J Comput Phys 380:295. https://doi.org/10.1016/j.jcp.2018.11.034

    Article  MathSciNet  Google Scholar 

  38. OpenFOAM.org. https://www.openfoam.org. Accessed: August 08, 2023

  39. Sigmond R (1982) Simple approximate treatment of unipolar space-charge-dominated coronas: The warburg law and the saturation current. J Appl Phys 53(2):891

    Article  Google Scholar 

  40. Wang F, Martinuzzi R et al (2005) Experimental study of particle trajectory in electrostatics powder coating process. Powder Technol 150(1):20

  41. OpenFOAM.com. https://www.openfoam.com. Accessed 08 Aug 2023

  42. Bre F, Gimenez JM (2022) A cloud-based platform to predict wind pressure coefficients on buildings. Build Simul 15(8):1507

    Article  Google Scholar 

  43. Jasak H (2009) in 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition

  44. Bachler G, Schiffermüller H, Bregant A (2001) A parallel fully implicit sliding mesh method for industrial CFD applications. Parallel Comput. Fluid Dyn, pp 501–508

  45. Farrell PE, Piggott MD, Pain CC, Gorman GJ, Wilson CR (2009) Conservative interpolation between unstructured meshes via supermesh construction. Comput Methods Appl Mech Eng 198(33–36):2632

    Article  MathSciNet  Google Scholar 

  46. Aguerre H, Márquez Damián S, Gimenez JM, Nigro N (2017) Conservative handling of arbitrary non-conformal interfaces using an efficient supermesh. J Comput Phys 335:21

    Article  MathSciNet  Google Scholar 

  47. Salvatore F, Alves Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. https://doi.org/10.5281/zenodo.6077997. This report is also classified as INSEAN Technical Report 2006-085

  48. Cabral B, Leedom LC (1993) Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp 263–270

Download references

Acknowledgements

This work was supported by the CERCA program of the Generalitat de Catalunya, and the Spanish Ministry of Economy and Competitiveness through the "Severo Ochoa Programme for Centres of Excellence in R &D" (CEX2018-000797-S). Also, the author acknowledges MCIN / AEI and FEDER Una manera de hacer Europa for funding this work via project PID2021-122676NB-I00. by CIENCIA FEDER Una manera de hacer Europa via project PID2021-122676NB-I00. Last but not least, the author kindly thanks Prof. Sergio Idelsohn for the fruitful meetings and discussions. His distinct viewpoint was helpful in crafting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Gimenez.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimenez, J.M. Multiscale simulation of electrostatic powder coating sprays. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-023-00703-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00703-w

Keywords

Navigation