Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T23:15:38.174Z Has data issue: false hasContentIssue false

The trace-element compositions of amphibole, magnetite and ilmenite as potential exploration guides to metamorphosed Proterozoic Cu–Zn±Pb±Au±Ag volcanogenic massive sulfide deposits in Colorado, USA

Published online by Cambridge University Press:  11 September 2023

Paul G. Spry*
Affiliation:
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
Edward H. Berke
Affiliation:
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
Dan Layton-Matthews
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, 36 Union Street, Kingston, Ontario, Canada
Alexandre Voinot
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, 36 Union Street, Kingston, Ontario, Canada
Adriana Heimann
Affiliation:
Department of Geological Sciences, 101 Graham Building, East Carolina University, East 5th Street, Greenville, North Carolina, USA
Graham S. Teale
Affiliation:
Teale & Associates Pty Ltd, PO Box 740, North Adelaide, South Australia 5006, Australia
Anette von der Handt
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, 2020–2207 Main Mall, University of British Columbia, Vancouver, British Columbia, Canada
*
Corresponding author: Paul G. Spry; Email: pgspry@iastate.edu

Abstract

Orthoamphibole, clinoamphibole and magnetite are common minerals in altered rocks associated spatially with Palaeoproterozoic volcanogenic massive sulfide (VMS) deposits in Colorado, USA and metamorphosed to the amphibolite facies. These altered rocks are dominated by the assemblage orthoamphibole (anthophyllite/gedrite)–cordierite–magnetite±gahnite±sulfides. Magnetite also occurs in granitoids, banded iron formations, quartz garnetite, and in metallic mineralisation consisting of semi-massive pyrite, pyrrhotite, chalcopyrite, and sphalerite with subordinate galena, gahnite and magnetite; amphibole also occurs in amphibolite. The precursor to the anthophyllite/gedrite–cordierite assemblages was probably the assemblage quartz–chlorite formed from hydrothermal ore-bearing fluids (~250° to 400°C) associated with the formation of metallic minerals in the massive sulfide deposits.

Element–element variation diagrams for amphibole, magnetite and ilmenite based on LA-ICP-MS data and Principal Component Analysis (PCA) for orthoamphiboles and magnetite show a broad range of compositions which are primarily dependent upon the nature of the host rock associated spatially with the deposits. Although discrimination plots of Al/(Zn+Ca) vs Cu/(Si+Ca) and Sn/Ga vs Al/Co for magnetite do not indicate a VMS origin, the concentration of Al+Mn together with Ti+V and Sn vs Ti support a hydrothermal rather than a magmatic origin for magnetite. Principal Component Analyses also show that magnetite and orthoamphibole in metamorphosed altered rocks and sulfide zones have distinctive eigenvalues that allow them to be used as prospective pathfinders for VMS deposits in Colorado. This, in conjunction with the contents of Zn and Al in magnetite, Zn and Pb in amphibole, ilmenite and magnetite, the Cu content of orthoamphibole and ilmenite, and possibly the Ga and Sn concentrations of magnetite constitute effective exploration vectors.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Good

References

Aiken, J.L. (1981) 1981 Drilling Results Grape Creek Project, Fremont County Colorado. Report to U.S. Borax Exploration, Boron, USA, 16 pp.Google Scholar
Allen, R.L., Lundström, I., Ripa, M., Simeonov, A. and Christofferson, H. (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, 9791008.CrossRefGoogle Scholar
Anderson, J.L. and Cullers, R.L. (1999) Paleo- and Mesoproterozoic granite plutonism of Colorado and Wyoming. Rocky Mountain Geology, 34, 149164.CrossRefGoogle Scholar
Bédard, É., de Vazelhes V., De Bronac and Beaudoin, G. (2022) Performance of predictive supervised classification models of trace elements in exploration. Journal of Geochemical Exploration, 236, 106959.CrossRefGoogle Scholar
Bennett, V.C. and DePaolo, D.J. (1987) Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geological Society of America Bulletin, 99, 674–85.2.0.CO;2>CrossRefGoogle Scholar
Berke, E.H., Spry, P.G., Heimann, A., Teale, G.S., Johnson, B., Von der Handt A., Alers B and Shallow J.M. (2023) The genesis of metamorphosed Paleoproterozoic massive sulfide occurrences in central Colorado: geological, mineralogical and sulfur isotope constraints. Geological Magazine, https://doi.org/10.1017/S0016756823000407.CrossRefGoogle Scholar
Bickford, M.E., Cullers, R.L., Shuster, R.D., Premo, R.L. and Van Schmus, W.R. (1989) U-Pb zircon geochronology of Proterozoic and Cambrian plutons in the Wet Mountains and southern Front Range. Pp 4964 in: Proterozoic Geology of the Southern Rocky Mountains (Grambling, J.A. and Tewksbury, B.J., editors). Geological Society of America Special Paper 235.CrossRefGoogle Scholar
Birch, W.D., Burke, E.A.J., Wall, V.J. and Etheridge, M.A. (1988) Ecandrewsite, the zinc analogue of ilmenite, from Little Broken Hill, New South Wales, Australia, and the San Valentin Mine, Sierra de Cartagena, Spain. Mineralogical Magazine, 52, 237240.CrossRefGoogle Scholar
Bowes, D.R. and Farrow, C.M. (1997) Major and trace element compositions of the UICC standard asbestos samples. American Journal of Industrial Medicine, 32, 592594.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Canil, D., Grondahl, C., Lacourse, T., and Pisiak, L.K. (2016) Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geology Reviews, 72, 11161128.CrossRefGoogle Scholar
Charlier, B., Skår, Ø., Korneliussen, A., Duchesne, J.C. and Vander Auwera, J. (2007) Ilmenite composition in the Tellnes Fe–Ti deposit, SW Norway: fractional crystallization, postcumulus evolution and ilmenite–zircon relation. Contributions to Mineralogy and Petrology, 154, 119134.CrossRefGoogle Scholar
Chen, W.T., Zhou, M.-F., Li, X., Gao, J.-F., Hou, K. (2014) In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geology Reviews, 65, 929939.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Jančev, S., Pekov, I.V., Ermolaeva, V.N., Varlamov, D.A., Belakovskiy, D.I. and Britvin, A.N. (2020) Zinc-rich and copper-bearing amphiboles from sulfide-free ore occurrences of the Pelagonian Massif, Republic of North Macedonia. Mineralogy and Petrology, 114, 129140.CrossRefGoogle Scholar
Cooke, D.R., Wilkinson, J.J., Baker, M., Agnew, P., Phillips, J., Chang, Z., Chen, H., Wilkinson, C.C., Inglis, S., Hollings, P., Zhang, L., Gemmell, J.B., White, N.C., Danyushevsky, L. and Martin, H. (2020) Using mineral chemistry to aid exploration: a case study from the Resolution porphyry Cu-Mo deposit, Arizona. Economic Geology, 115, 813840.CrossRefGoogle Scholar
Croghan, C.W. and Egeghy, P.P. (2003) Methods of Dealing with Values Below the Limit of Detection Using SAS. Southern SAS User Group, St. Petersburg, Florida, 2224 September 2003.Google Scholar
Dare, S.A.S., Barnes, S.-J. and Beaudoin, G. (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta, 88, 2750.CrossRefGoogle Scholar
Dare, S.A.S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E. and Potvin-Doucet, C. (2014) Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49, 785796.CrossRefGoogle Scholar
Davis, J.C. (2002) Statistics and Data Analysis in Geology. 3rd ed. John Wiley & Sons, New York, 656 pp.Google Scholar
Drobeck, P.A. (1981) Proterozoic syngenetic massive sulfide deposits in the Gunnison gold belt, Colorado. Pp. 279286 in: Western Slope (Western Colorado) (Epis, R.C. and Callender, J.F., editors). New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook.CrossRefGoogle Scholar
Duebendorfer, E.M., Williams, M.L. and Chamberlain, K.R. (2015) Case for a temporally and spatially expanded Mazatzal orogeny. Lithosphere, 7, 603610.Google Scholar
Dupuis, C. and Beaudoin, G. (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46, 319335.CrossRefGoogle Scholar
Ene, V.V. (2014) Major and Trace Element Geochemistry of Ilmenite Suites from the Kimberley Diamond Mines, South Africa. MS thesis, University of Toronto, CanadaGoogle Scholar
Frank, K.S., Spry, P.G., Raat, H., Allen, R.L., Jansson, N.F. and Ripa, M. (2019) Variability in the geological, mineralogical, and geochemical characteristics of base metal sulfide deposits in the Stollberg ore field, Bergslagen, Sweden. Economic Geology, 114, 473511.CrossRefGoogle Scholar
Frank, K.S., Spry, P.G., O'Brien, J.J., Koenig, A., Allen, R.L. and Jansson, N.F. (2022) Magnetite as a provenance and exploration tool to metamorphosed base metal sulfide deposits in the Stollberg ore field, Bergslagen, Sweden. Mineralogical Magazine, 86, 373396.CrossRefGoogle Scholar
Franklin, J.M., Gibson, H.L., Jonasson, I.R. and Galley, A.G. (2005) Volcanogenic massive sulfide deposit. Pp. 523560 in: Economic Geology 100th Anniversary Volume 1905–2005 (Hedenquist, J.W., Thompson, F.H., Goldfar, R.J. and Richards, J.P., editors). Economic Geology Publishing Company, Littleton, Colorado, USA.Google Scholar
Ghosh, B. and Praveen, M.N. (2007) Garnet-gahnite-staurolite relations and occurrence of ecandrewsite from the Koparpani base metal sulfide prospect, Betul Belt, Central India. Neues Jahrbuch für Mineralogie Abhandlungen, 184, 105116.CrossRefGoogle Scholar
Gion, A.M., Piccoli, P.M. and Candela, P.A. (2022) Characterization of biotite and amphibole compositions in granites. Contributions to Mineralogy and Petrology, 177, 43.CrossRefGoogle Scholar
Guillong, M., Hametner, K., Reusser, E., Wilson, S.A. and Günther, D. (2005) Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostandards and Geoanalytical Research, 29, 315331.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Hedge, C.E. (1970) Whole-rock age of the Pikes Peak batholith, Colorado. United States Geological Survey Professional Paper, 700-B, B86B89.Google Scholar
Heimann, A. (2002) Zinc-Rich Spinels Associated with Proterozoic Base Metal Sulfide Occurrences, Colorado, and their use as Guides to Metamorphosed Massive Sulfide Deposits. MS thesis, Iowa State University, USA.Google Scholar
Heimann, A., Spry, P.G. and Teale, G.S. (2005) Zinc-rich spinels associated with Proterozoic base metal sulfide occurrences, Colorado, and their use as guides to metamorphosed massive sulfide deposits. The Canadian Mineralogist, 43, 601622.CrossRefGoogle Scholar
Heimann, A., Spry, P.G., Teale, G.S. and Jacobson, C.E. (2006) Coronas, symplectite textures, and reactions involving aluminous minerals in gedrite-cordierite gneisses from Evergreen, Front Range, Colorado. The Canadian Mineralogist, 44, 10251044.CrossRefGoogle Scholar
Heinrich, E.W.M. (1981) Precambrian tungsten and copper-zinc skarn deposits of south-central Colorado. Colorado Geological Survey Resource Series, 21, 115 pp.Google Scholar
Hu, B., Zeng, L.-P., Liao, W., Wen, G., Hu, H., Li, M.Y.H. and Zhao, X.-F. (2022) The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal systems: Insight from machine learning analysis. Economic Geology, 117, 16131628.CrossRefGoogle Scholar
Humphreys, M.C.S., Cooper, G.F., Zhang, J., Loewen, M., Kent, A.J.R., Macpherson, C.G. and Davidson, J.P. (2019) Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contributions to Mineralogy and Petrology, 174, 115.Google Scholar
Iveson, A.A., Rowe, M.C., Webster, J.D. and Neill, O.K. (2018). Amphibole-, clinopyroxene- and plagioclase-melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. Journal of Petrology, 59, 15791604.CrossRefGoogle Scholar
Jang, Y.D. and Naslund, H.R. (2003) Major and trace element variation in ilmenite in the Skaergaard Intrusion: petrologic implications. Chemical Geology, 193, 109125.CrossRefGoogle Scholar
Jia, L.-H., Mao, Q., Tian, H.-C., Li, L.-X., Qi, L., Wu, S.-T., Yuan, J.-Y., Huan, L.-L. and Chen, Y. (2022) High-precision EPMA measurement of trace elements in ilmenite and reference material development. Journal of Analytical Atomic Spectroscopy, 37, 23512361.CrossRefGoogle Scholar
Jochum, K.P., Willbold, M., Raczek, I., Stoll, B. and Herwig, K. (2005) Chemical characterization of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. 29. Geostandards and Geoanalytical Research, 29, 285302.CrossRefGoogle Scholar
Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Qichao, Y., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D. and Enzweiler, J. (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35, 397429.CrossRefGoogle Scholar
Jolliffe, I.T. and Cadima, J. (2016) Principal component analysis: A review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374, 20150202.Google ScholarPubMed
Jones, J.V. III, Siddoway, C.S. and Connelly, JN (2010) Characteristics and implications of ca.1.5 Ga deformation across a Proterozoic mid-crustal section, Wet Mountains, Colorado, USA. Lithosphere, 2, 119135.CrossRefGoogle Scholar
Kampmann, T.C., Jansson, N.F., Stephens, M.B., Olin, P.H., Gilbert, S. and Wanhainen, C. (2018) Syn-tectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden. Ore Geology Reviews, 96, 4871.CrossRefGoogle Scholar
Kamvong, T., Zaw, K. and Siegele, R. (2007) PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: a pilot study. 15th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress. University of Melbourne, Australia [Abstract].Google Scholar
Karlstrom, K.E., Åhäll, K.-I., Harlan, S.S., Williams, M.L., NcLelland, J. and Geissman, J.W. (2001) Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research, 111, 530.CrossRefGoogle Scholar
Klein, C. and Ito, J. (1968) Zincian and manganoan amphiboles from Franklin, New Jersey. American Mineralogist, 53, 12641275.Google Scholar
Kleinhans, L. and Swan, M. (2022) Geological, geochemical, and geophysical characterization of gold in the Dawson peraluminous intrusive-related shear zone gold system, central Colorado. Geological Society of America Abstracts with Program, 54, 219–13.Google Scholar
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wälle, M., Heinrich, C.A., Holtz, F. and Munizaga, R. (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171, 1538.CrossRefGoogle Scholar
Korinevsky, V.G., Filippova, K.A., Kotlyarov, V.A., Korinevsky, E.V. and Artemyev, D.A. (2019) Trace-elements in minerals from unusual rocks of the southern Urals. Lithosphere, 19, 269292.CrossRefGoogle Scholar
La Cruz, N.L., Ovalle, J.T., Simon, A.C., Konecke, B.A., Barra, F., Reich, M., Leisen, M. and Childress, T.M. (2020) The geochemistry of magnetite and apatite from the El Laco iron oxide-apatite deposit, Chile: Implications for ore genesis. Economic Geology, 115, 14611491.CrossRefGoogle Scholar
Leake, B.E. (1968) A catalog of analyzed calciferous and sub-calciferous amphiboles together with their nomenclature and associated minerals. Geological Society of America Special Paper, 68, 144.Google Scholar
Lindgren, W. (1908) Notes on copper deposits in Chaffee, Fremont, and Jefferson Counties, Colorado. U.S. Geological Survey Bulletin, 691, 57174.Google Scholar
Lindgren, W. (1925) The cordierite-anthophyllite mineralization at Blue Hill, Maine, and its relation to similar occurrences. Proceedings of the National Academy of Sciences, 11, 14.CrossRefGoogle ScholarPubMed
Maghfouri, S., Mousivand, F., Rastad, E. and Lentz, D.R. (2021) Chemical composition of magnetite and chlorite from the stringer zone of the Nudeh volcanogenic massive sulfide (VMS) deposit, Iran: geological implications. Mineralogy and Petrology, 115, 241256.CrossRefGoogle Scholar
Magnani, M.B., Miller, K.C., Levander, A. and Karlstrom, K.E. (2004) The Yavapai-Mazatzal boundary: A long-lived element in the lithosphere of southwestern North America. Geological Society of America Bulletin, 116, 11371142.CrossRefGoogle Scholar
Makvandi, S., Beaudoin, G., Ghasemazadeh-Barvarz, M.G. and McClenaghan, B.M. (2013) Fingerprinting volcanogenic massive sulfide deposits using magnetite chemistry: Application to till from Izok Lake, Nunavut, Canada, in: Mineral Deposit Research for a High-tech World. Proceedings of the 12th Biennial Geology Applied to Mineral Deposits Meeting, 12–15 August, 2013, Uppsala, Sweden.Google Scholar
Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E.C., McClenaghan, B.M. and Duchesne, C. (2016a) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geology Reviews, 78, 388408.CrossRefGoogle Scholar
Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E.C., McClenaghan, B.M. and Duchesne, C. (2016b) Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geology Reviews, 72, 6085.CrossRefGoogle Scholar
Marks, M., Halama, R., Wenzel, T. and Markl, G. (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning. Chemical Geology, 211, 185215.CrossRefGoogle Scholar
Mavrogonatos, C., Voudouris, P., Berndt, J., Klemme, S., Zaccarini, F., Spry, P.G., Melfos, V., Tarantola, A., Keith, M., Klemd, R. and Haase, K. (2019) Trace elements in magnetite from the Pagoni Rachi porphyry prospect, NE Greece: Implications for ore genesis and exploration. Minerals, 9, 725, doi: 10.3390/min9120725.CrossRefGoogle Scholar
McCurdy, M.W., Peter, J.M., McClenaghan, M.B., Gadd, M.G., Layton-Matthews, D., Leybourne, M.I., Garrett, R.G., Petts, D.C., Jackson, S.E. and Casselman, S. (2022) Evaluation of magnetite as an indicator mineral for porphyry Cu exploration: a case study using bedrock and stream sediments at the Casino porphyry Cu–Au–Mo deposit, Yukon, Canada. Geochemistry: Exploration, Environment, Analysis, 22, https://doi.org/10.1144/geochem2021-072CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Moore, R.O., Griffin, W.L., Gurney, J.J., Ryan, C.G., Cousens, D.R., Sie, S.H. and Surer, G.F. (1992) Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa. Lithos, 29, 118.CrossRefGoogle Scholar
Mulrooney, D. and Rivers, T. (2005) redistribution of the rare-earth elements among coexisting minerals in metamafic rocks across the epidote-out isograd: An example from the St. Anthony Complex, Newfoundland, Canada. The Canadian Mineralogist, 43, 263294.CrossRefGoogle Scholar
Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E. and Box, S.E. (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107, 12751292.CrossRefGoogle Scholar
Nadoll, P., Angerer, T., Mauk, J.L., French, D. and Walshe, J. (2014) The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 132.CrossRefGoogle Scholar
Nandedkar, R.H., Hürlimann, N., Ulmer, P. and Müntener, O. (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contributions to Mineralogy and Petrology, 171, 71.CrossRefGoogle Scholar
Nielsen, R.L., Forsythe, L.M., Gallahan, W.E. and Risk, M.R. (1994) Major- and trace-element magnetite-melt equilibria. Chemical Geology, 117, 167191.CrossRefGoogle Scholar
O'Brien, J.J., Spry, P.G., Teale, G.S., Jackson, S.E. and Koenig, A.E. (2015) Gahnite composition as a means to fingerprint metamorphosed base metal deposits. Journal of Geochemical Exploration, 159, 4861.CrossRefGoogle Scholar
Pagé, P. and Barnes, S.-J. (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104, 9971018.CrossRefGoogle Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508.CrossRefGoogle Scholar
Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, A.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21, 115144.CrossRefGoogle Scholar
Pekov, I.V., Sandalov, F.D., Koshlyakova, N.N., Vigasina, M.F., Polekhovsky, Y.S., Britvin, S.N., Sidorov, E.G. and Turchkova, A.G. (2018) Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals, 8, 498, https://doi.org/10.3390/min8110498.CrossRefGoogle Scholar
Pisiak, L.K., Canil, D., Grondahl, C., Plouffe, A., Ferbey, T. and Anderson, R.G. (2015) Magnetite as a porphyry copper indicator mineral in till: A test using the Mount Polley porphyry copper-gold deposit, south-central British Columbia (NTS 093A). Geoscience BC Summary of Activities 2014, 2015–1, 141150.Google Scholar
Pollock, M.V., Spry, P.G., Tott, K.A., Koenig, A., Both, R.A. and Ogierman, J.A. (2018) The origin of the sediment-hosted Kanmantoo Cu-Au deposit, South Australia: Mineralogical considerations. Ore Geology Reviews, 95, 94117.CrossRefGoogle Scholar
Popp, R.K., Gilbert, M.C. and Craig, J.R. (1977a) Stability of amphibole with respect to oxygen fugacity. American Mineralogist, 62, 112.Google Scholar
Popp, R.K., Gilbert, M.C. and Craig, J.R. (1977b) Stability of amphibole with respect to sulfur fugacity. American Mineralogist, 62, 1330.Google Scholar
Premo, W.R. and Fanning, C.M. (2000) SHRIMP U-Pb zircon ages for Big Creek gneiss, Wyoming and Boulder Creek batholith, Colorado: Implications for timing of Paleoproterozoic accretion of the northern Colorado province. Rocky Mountain Geology, 35, 3150.CrossRefGoogle Scholar
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.Google Scholar
Ririe, G.T. (1981) Precambrian Mineralization and Tectonic Framework of Fremont County, Colorado. PhD dissertation, University of Iowa, USA.Google Scholar
Salotti, C.A. (1965) Mineralogy and paragenesis of the Cotopaxi, Colorado, Cu-Zn skarn deposit. American Mineralogist, 50, 11791212.Google Scholar
Schumacher, J.C. (2007) Metamorphic amphiboles: composition and coexistence. Pp. 359416 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Shaw, C.A. and Karlstrom, KE (1999) The Yavapai-Mazatzal crustal boundary in the southern Rocky Mountains. Rocky Mountain Geology, 34, 3752.CrossRefGoogle Scholar
Sheridan, D.M. and Raymond, W.H. (1984) Precambrian deposits of zinc-copper-lead sulfides and zinc spinel (gahnite) in Colorado. U.S. Geological Survey Bulletin, 1550, 31 pp.Google Scholar
Sheridan, D.M, Raymond, W.H. and Cox, L.J. (1981) Precambrian sulfide deposits in the Gunnison region, Colorado. Pp. 273276 in: Western Slope (Western Colorado) (Epis, R.C. and Callender, J.F., editors), New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook.CrossRefGoogle Scholar
Shimizu, K, Liang, Y, Sun C. Jackson C.R.M. and Saal A.E. (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. American Mineralogist, 102, 22542267.CrossRefGoogle Scholar
Siddoway, C.S., Givot, R.M., Bodle, C.D. and Heizler, M.T. (2000) Dynamic versus anorogenic setting for Mesoproterozoic plutonism in the Wet Mountains, Colorado: Does the interpretation depend on level of exposure? Rocky Mountain Geology, 35, 91111.CrossRefGoogle Scholar
Simonen, A. (1986) Vivianite from Paakkila, Tuusniemi, Finland. Bulletin of the Geological Society of Finland, 58, 271–175.CrossRefGoogle Scholar
Singoyi, B., Danyushevsky, L., Davidson, G.J., Large, R. and Zaw, K. (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. Society of Economic Geologists Conference, Keystone, Colorado, CD-ROM.Google Scholar
Skublov, S. and Drugova, G. (2003) Patterns of trace element distribution in calcic amphiboles as a function of metamorphic grade. The Canadian Mineralogist, 41, 383392.CrossRefGoogle Scholar
Smith, M.S., Dymek, R.F. and Schneiderman, J.S. (1992) Implications of trace element geochemistry for the origin of cordierite-orthoamphibole rocks from Orijärvi, Finland. Journal of Geology, 100, 545559.CrossRefGoogle Scholar
Spry, P.G., Peters, J. and Slack, J.F. (2000) Meta-exhalites as exploration guides to metamorphosed ore. Reviews in Economic Geology, 11, 163201.Google Scholar
Spry, P.G., Heimann, A., Messerly, J. and Houk, R.S. (2007) Discrimination of metamorphic and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia: Rare earth element signatures of garnet-rich rocks. Economic Geology, 102, 471494.CrossRefGoogle Scholar
Spry, P.G., McFadden, S., Teale, G.S., Alers, B., Shallow, J.M., and Glenn, J.M. (2022) Nodular sillimanite rocks as field indicators to metamorphosed massive sulfide deposits. Ore Geology Reviews, 141, 104632.CrossRefGoogle Scholar
Sun, C., Yang, X., Zhang, H., Ji., W. and Xi, D. (2022) Tracing the formation and modification of the Keketale VMS-type Pb-Zn deposit, Altai Mountains: Insights from ore deposit geology, geochronology, and magnetite geochemistry. Ore Geology Reviews, 1044, 104852.CrossRefGoogle Scholar
Tott, K.A., Spry, P.G., Pollock, M.V., Koenig, A., Both, R.A. and Ogierman, J.A. (2019) Ferromagnesian silicates and oxides as vectors to metamorphosed sediment-hosted Pb-Zn-Ag-(Cu-Au) deposits in the Cambrian Kanmantoo Group, South Australia. Journal of Geochemical Exploration, 200, 112138.CrossRefGoogle Scholar
Treloar, P.J., Koistinen, T.J. and Bowes, D.R. (1981) Metamorphic development of cordierite-amphibole rocks and mica schists in the vicinity of the Outokumpu ore deposit, Finland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 72, 201215.CrossRefGoogle Scholar
Upadhyay, H.D. and Smitheringale, W.G. (1972) Geology of the Gullbridge copper deposit, Newfoundland: Volcanogenic sulfides in cordierite-anthophyllite rocks. Canadian Journal of Earth Sciences, 9, 161173.CrossRefGoogle Scholar
Boogaart K.G., Van Der and Tolosana-Delgado, R. (2006) Compositional data analysis with ‘R’ and the package ‘compositions’. Pp 118127 in: Compositional Data Analysis in the Geosciences: From Theory to Practice. (Buccianti, A., Mateu-Figueras, G. and Pawlowsky-Glahn, V., editors) Geological Society, London, Special Publications, 264.Google Scholar
Verlaguet, A., Brunet, F., Goffé, B. and Murphy, W.M. (2006) Experimental study and modeling of fluid reaction paths in the quartz–kyanite±muscovite–water system at 0.7 GPa in the 350–550 °C range: implications for Al selective transfer during metamorphism. Geochimica et Cosmochimica Acta, 70, 17721788.CrossRefGoogle Scholar
Wagner, C., Villeneuve, J., Boudouma, O., Rividi, N., Orberger, B., Nabatian, G., Honarmand, M. and Monsef, I. (2023) In situ trace element and Fe-O isotope studies on magnetite of the iron-oxide ores from the Takab region, north western Iran: Implications for ore genesis. Minerals, 13, 774, https://doi.org/10.3390/min13060774.CrossRefGoogle Scholar
Warr, L. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Wen, G., Li, J.-W., Hofstra, A.H., Koenig, A.E., Lowers, H.A. and Adams, D. (2017) Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta, 213, 255270.CrossRefGoogle Scholar
Wolter, H.U. and Seifert, F. (1984) Mineralogy and genesis of cordierite-anthophyllite rocks from the sulfide deposit of Falun, Sweden. Lithos, 17, 147152.CrossRefGoogle Scholar
Ye, C., Feng, Y, Lei, R. and Yang, G. (2021) Compositional variation of amphiboles during magma mixing: A case study of Huangyangshan A-type granite in Kalamaili metallogenic belt, East Junggar, China. Frontiers in Earth Science, 9, 650014, doi: 10.3389/feart.2021.650014.CrossRefGoogle Scholar
Supplementary material: File

Spry et al. supplementary material

Spry et al. supplementary material
Download Spry et al. supplementary material(File)
File 10.1 KB